首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Astrophysical tests of general relativity belong to two categories: 1) “internal”, i.e. consistency tests within the theory (for example, tests that astrophysical black holes are indeed described by the Kerr solution and its perturbations), or 2) “external”, i.e. tests of the many proposed extensions of the theory. I review some ways in which astrophysical black holes can be used as natural laboratories for both “internal” and “external” tests of general relativity. The examples provided here (ringdown tests of the black hole “no-hair” theorem, bosonic superradiant instabilities in rotating black holes and gravitational-wave tests of massive scalar-tensor theories) are shamelessly biased towards recent research by myself and my collaborators. Hopefully this colloquial introduction aimed mainly at astrophysicists will convince skeptics (if there are any) that space-based detectors will be crucial to study fundamental physics through gravitational-wave observations.  相似文献   

2.
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher-dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories.The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from ∼ kpc (galaxy scales) to ∼ Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensing, galaxy cluster abundances, galaxy clustering and the integrated Sachs-Wolfe effect. A robust way to interpret observations is by constraining effective parameters, such as the ratio of the two metric potentials. Currently tests of gravity on astrophysical scales are in the early stages — we summarize these tests and discuss the interesting prospects for new tests in the coming decade.  相似文献   

3.
Black holes are among the most extreme objects that can be found in the Universe and an ideal laboratory for testing fundamental physics. Here, the basic properties of black holes as expected from general relativity, the main astronomical observations, and the leading astrophysical techniques to probe the strong gravity region of these objects are reviewed. The main intention is to provide a compact introductory overview on astrophysical black holes to new students entering this research field, as well as to senior researchers working in general relativity and alternative theories of gravity, who wish to quickly learn the state of the art of astronomical observations of black holes.  相似文献   

4.
Laser cosmology     
Recent years have witnessed tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena related to particle astrophysics and cosmology typically involve one or more of the following conditions: (1) extremely high energy events;(2) very high density, high temperature processes; (3) super strong field environments. Laboratory experiments using high intensity lasers can calibrate astrophysical observations, investigate underlying dynamics of astrophysical phenomena, and probe fundamental physics in extreme limits. In this article we give an overview of the exciting prospect of laser cosmology. In particular, we showcase its unique capability of investigating frontier cosmology issues such as cosmic accelerator and quantum gravity.  相似文献   

5.
Within the Minimal Supersymmetric Standard Model (MSSM) we systematically investigate the bounds on the mass of the lightest neutralino. We allow for non-universal gaugino masses and thus even consider massless neutralinos, while assuming in general that R-parity is conserved. Our main focus is on laboratory constraints. We consider collider data, precision observables, and also rare meson decays to very light neutralinos. We then discuss the astrophysical and cosmological implications. We find that a massless neutralino is allowed by all existing experimental data and astrophysical and cosmological observations.  相似文献   

6.
The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosions and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 1018–1022 W/cm2 and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.  相似文献   

7.
We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the "Hillas criterion", such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1-100 GeV range and by ground-based gamma-ray telescopes in the TeV range.  相似文献   

8.
If the cosmological dark matter is primarily in the form of an elementary particle which has mass m(p) and cross section for self-interaction sigma, then seed black holes (formed in stellar collapse) will grow in a Hubble time t(H) due to accretion of the dark matter to a mass, M(H) = sqrt[IC(9)(A)t(H)(sigma/G(3)m(p)c(2))] = 7.1x10(6)(sigma/m(p))(1/2)V(9/2)(c)t(1/2)(H,15) solar masses. Here I is a numerical factor, C(A) the galactic velocity dispersion, and V(c) its rotation velocity. For the same values of ( sigma/m(p)) that are attractive with respect to other cosmological desiderata, this produces massive black holes in the (10(6)-10(9))M( middle dot in circle) range observed, with the same dependence on a V(c) seen, and with a time dependence consistent with observations. Other astrophysical consequences of collisional dark matter and tests of the idea are noted.  相似文献   

9.
In this study, we investigate the characteristics and properties of a traversable wormhole constrained by the current astrophysical observations in the framework of modified theories of gravity (MOG). As a concrete case, we study traversable wormhole space–time configurations in the Dvali–Gabadadze–Porrati (DGP) braneworld scenario, which are supported by the effects of the gravity leakage of extra dimensions. We find that the wormhole space–time structure will open in terms of the 2σ confidence level when we utilize the joint constraints supernovae (SNe) Ia + observational Hubble parameter data (OHD) + Planck + gravitational wave (GW) and z < 0:2874. Furthermore, we obtain several model-independent conclusions, such as (i) the exotic matter threading the wormholes can be divided into four classes during the evolutionary processes of the universe based on various energy conditions; (ii) we can offer a strict restriction to the local wormhole space–time structure by using the current astrophysical observations; and (iii) we can clearly identify a physical gravitational resource for the wormholes supported by astrophysical observations, namely the dark energy components of the universe or equivalent space–time curvature effects from MOG. Moreover, we find that the strong energy condition is always violated at low redshifts.  相似文献   

10.
The possibility of using astrophysical observations of rotational transitions in the methanol molecule to measure, or constrain temporal and spatial variations in the proton-to-electron mass ratio (μ) has recently been investigated by several groups. Here we outline some of the practical considerations of making such observations, including both the instrumental and astrophysical limitations which exist at present. This leads us to conclude that such observations are unlikely to be able to improve evidence either for, or against the presence of variations in the proton-to-electron mass ratio by more than an order of magnitude beyond current limits.  相似文献   

11.
At present, coalescing binary systems containing neutron stars or black holes are thought to be the most likely sources of gravitational waves to be detected by long baseline interferometers being currently designed. In this essay we calculate the characteristics of the signal from a coalescing binary to the first post-Newtonian order. We show that at coalescence the eccentricity of the orbit, tidal effects, and magnetic interactions can be neglected. We also consider the effects of the expansion of the universe on the signal. We show that observations of gravitational waves from coalescing binaries by a network of detectors will provide a wealth of astrophysical information, e.g., determination of the Hubble constant, new rungs on the cosmic distance ladder, estimates of the masses of components of the binary systems, information about the mass distribution in the universe, highly accurate tests of general relativity, and constraints on neutron-star equations of state. Further development of laser interferometers may enable determination of the deceleration parameter, provide new information about evolution of the universe, and even enable observation of such effects as gravitational lensing.This essay received the second award from the Gravity Research Association for the year 1987-Ed.On leave of absence from Mathematical Institute, Polish Academy of Science, Warsaw, Poland.  相似文献   

12.
用激光等离子体相互作用对天体物理过程进行模拟研究已成为当前世界物理和天文学家深感兴趣的重要前沿领域.文章比较了强激光作用下产生的等离子体与天体物理条件下的等离子体之间在内部物理过程的相似性,论述了由前者模拟后者的物理依据,即相似性原则和定标规律.在此基础上,回顾和评述了当前已经在高离化态光谱学、类天体等离子体状态方程和辐射不透明度以及流体动力学不稳定性等方面开展的强激光天体物理学的研究,这些研究对于理解超新星、白矮星、中子星以及巨行星、褐矮星等领域的天体物理过程起到了极大的作用,并正在成为联系天体物理理论模拟和观测的中间桥梁.  相似文献   

13.
Bi XJ  Yin PF  Yu ZH  Yuan Q 《Physical review letters》2011,107(24):241802
The superluminal neutrinos detected by OPERA indicate Lorentz invariance violation (LIV) of the neutrino sector at the order of 10(-5). We study the implications of the result in this work. We find that such a large LIV implied by OPERA data will make the neutrino production process π → μ + ν(μ) kinematically forbidden for a neutrino energy greater than about 5 GeV. The OPERA detection of neutrinos at 40 GeV can constrain the LIV parameter to be smaller than 3×10(-7). Furthermore, the neutrino decay in the LIV framework will modify the neutrino spectrum greatly. The atmospheric neutrino spectrum measured by the IceCube Collaboration can constrain the LIV parameter to the level of 10(-12). The future detection of astrophysical neutrinos of galactic sources is expected to be able to give an even stronger constraint on the LIV parameter of neutrinos.  相似文献   

14.
王菲鹿  赵刚  张杰 《物理》2002,31(5):298-301
天体辐射不透明是天体物理中一个非常重要的基本物理量,其理论计算结果的验证以往只能借助天文观测,激光技术的重大突破,使得天体物理学家可以在实验室里模拟天体等离子体中的辐射输运过程,这为更加深入地了解辐射不透明度提供了极好的实验手段。  相似文献   

15.
Existing limits on the nonradiative decay of one neutrino to another plus a massless particle (e.g., a singlet Majoron) are very weak. The best limits on the lifetime to mass ratio come from solar neutrino observations and are tau/m greater, similar 10(-4) s/eV for the relevant mass eigenstate(s). For lifetimes even several orders of magnitude longer, high-energy neutrinos from distant astrophysical sources would decay. This would strongly alter the flavor ratios from the phi(nu(e)):phi(nu(mu)):phi(nu(tau))=1:1:1 expected from oscillations alone and should be readily visible in the near future in detectors such as IceCube.  相似文献   

16.
The 44Ti(t1/2=59 yr) nuclide, an important signature of supernova nucleosynthesis, has recently been observed as live radioactivity by gamma-ray astronomy from the Cas A remnant. We investigate in the laboratory the major 44Ti production reaction 40Ca(alpha, gamma)44Ti (Ec.m. approximately 0.6-1.2 MeV/u by direct off-line counting of 44Ti nuclei. The yield, significantly higher than inferred from previous experiments, is analyzed in terms of a statistical model using microscopic nuclear inputs. The associated stellar rate has important astrophysical consequences, increasing the calculated supernova 44Ti yield by a factor approximately 2 over previous estimates and bringing it closer to Cas A observations.  相似文献   

17.
In this Letter, laboratory astrophysical jet experiments performed with the LULI2000 laser facility are presented. High speed plasma jets (150 km.s(-1)) are generated using foam-filled cone targets. Accurate experimental characterization of the plasma jet is performed by measuring its time evolution and exploring various target parameters. Key jet parameters such as propagation and radial velocities, temperature, and density are obtained. For the first time, the required dimensionless quantities are experimentally determined on a single-shot basis. Although the jets evolve in vacuum, most of the scaling parameters are relevant to astrophysical conditions.  相似文献   

18.
The strong electronic absorption systems of the B1 Sigma u+-X1 Sigma g+ Lyman and the C1Pi u-X1 Sigma g+ Werner bands can be used to probe possible mass-variation effects on a cosmological time scale from spectra observed at high redshift, not only in H2 but also in the second most abundant hydrogen isotopomer HD. High resolution laboratory determination of the most prominent HD lines at extreme ultraviolet wavelengths is performed at an accuracy of delta lambda/lambda approximately 5 x 10(-8), forming a database for comparison with astrophysical data. Sensitivity coefficients Ki = d ln lambda i/d ln mu are determined for HD from quantum ab initio calculations as a function of the proton-electron mass ratio mu. Strategies to deduce possible effects beyond first-order baryon/lepton mass ratio deviations are discussed.  相似文献   

19.
We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5 x 10(-14) m/s(2).  相似文献   

20.
X-ray studies of stellar mass black holes in X-ray binaries and mass-accreting supermassive black holes in Active Galactic Nuclei have achieved a high degree of maturity and have delivered detailed information about the astrophysical sources and the physics of black hole accretion. In this article, I review recent progress made towards using the X-ray observations for testing the “Kerr hypothesis” that the background spacetimes of all astrophysical quasi-stationary black holes are described by the Kerr metric. Although the observations have indeed revealed clear evidence for relativistic effects in strong-field gravity, quantitative tests of the Kerr hypothesis still struggle with theoretical and practical difficulties. In this article, I describe several recently introduced test metrics and review the status of constraining the background spacetimes of mass accreting stellar mass and supermassive black holes with these test metrics. The main conclusion of the discussion is that astrophysical uncertainties are large compared to the rather small observational differences between the Kerr and non-Kerr metrics precluding quantitative constraints on deviations from the Kerr metric at this point in time. I conclude with discussing future progress enabled by more detailed numerical simulations and by future X-ray spectroscopy, timing, polarimetry, and interferometry missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号