首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The design and synthesis of a new class of gold nanoparticle with guanosine monophosphate derivatives or G-rich oligonucleotides as their surface ligands are described. These nanoparticles spontaneously form macroscopic assemblies at low temperature and relatively high salt concentrations, which is attributed to the cooperative formation of guanosine quartets and G-quadruplexes between the individual nanoparticles. Significantly, the solution behavior of these nanoparticles is highly controllable by adjusting solution parameters (including temperature, ionic strength, and ion species) and the sequence of the G-rich oligonucleotide  相似文献   

2.
Ordered metal nanoparticle assemblies-superlattices-have captivated and stirred the imagination of scientists and engineers alike and promise great prospect for future technologies. This potential though will greatly be determined by the understanding and control that can be exerted on the assembling processes. This tutorial review presents a brief account of the factors that govern the formation of superlattices and then presents several examples of gold nanoparticle superlattices that are distinguished by the size of participating particles, chain length/functional group of the capping agent, the substrates on which they form etc.  相似文献   

3.
4.
Self-assembly of cobalt nanoparticle rings   总被引:5,自引:0,他引:5  
Weakly ferromagnetic cobalt nanoparticles can assemble spontaneously into nanosized "bracelets" when dispersed in organic solvents containing resorcinarenes as surfactants. Bracelet self-assembly occurs in solution and is directed by magnetic dipolar interactions, whereas nanoparticle rings with larger diameters are produced by evaporation-driven flow on wetted surfaces.  相似文献   

5.
6.
7.
An investigation on the sinterization of Gd:CeO2 (Ce0.85Gd0.15O1.9?δ ceramic system) 3–10 nm nanoparticles in pressed bodies was done. The heating rate was taken as a key parameter and two competing sinterization processes were identified, associated with different diffusional mechanisms. Using heating rates of 113 °C min ?1 , a high-final density (98 % of the theoretical) was obtained by superposing the two aforementioned mechanisms, resulting in a homogeneous microstructure at lower temperatures.  相似文献   

8.
The room-temperature structure of DNA-linked gold nanoparticle aggregates is investigated using a combination of experiment and theory. The experiments involve extinction spectroscopy measurements and dynamic light scattering measurements of aggregates made using 60 and 80 nm gold particles and 30 base-pair DNA. The theoretical studies use calculated spectra for models of the aggregate structures to determine which structure matches the observations. These models include diffusion-limited cluster-cluster aggregation (DLCA), reaction-limited cluster-cluster aggregation (RLCA), and compact (nonfractal) cluster aggregation. The diameter of the nanoparticles used in the experiments is larger than has been considered previously, and this provides greater sensitivity of spectra to aggregate structure. We show that the best match between experiment and theory occurs for the RLCA fractal structures. This indicates that DNA hybridization takes place under irreversible conditions in the room-temperature aggregation. Some possible structural variations which might influence the result are considered, including the edge-to-edge distance between nanoparticles, variation in the diameter of the nanoparticles, underlying lattice structures of on-lattice compact clusters, and positional disorders in the lattice structures. We find that these variations do not change the conclusion that the room-temperature structure of the aggregates is fractal. We also examine the variation in extinction at 260 nm as temperature is increased, showing that the decrease in extinction at temperatures below the melting temperature is related to a morphological change from fractal toward compact structures.  相似文献   

9.
10.
The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.  相似文献   

11.
The fabrication of functional nanostructured materials for sensing, encapsulation and delivery requires practical approaches to self-assembly on multiple length scales and the synthesis of tough yet permeable structures. Here, the self-assembly of functionalized, photoluminescent nanoparticles at liquid interfaces, followed by cross-linking of the associated ligands, affords robust membranes that maintain their integrity even when they are removed from the interface. These composite membranes, nanometers in thickness, are elastic yet permeable and have potential applications involving controlled permeability and diffusion. Cadmium selenide (CdSe) nanoparticles are used, since their inherent photoluminescence offers a direct way to probe the spatial organization of the particles. Functionalized ligands attached to the nanoparticles provide an effective means to stabilize the interfacial assembly by cross-linking. The concepts shown are adaptable to other type of nanoparticles, ligands, and solvent combinations.  相似文献   

12.
Nanoparticles in polymer films have shown the tendency to migrate to the substrate due to an entropic-based attractive depletion interaction between the particles and the substrate. It is also known that polymer-grafted nanoparticles show better dispersion in a polymer matrix. Here, molecular dynamics simulations are employed to study the effect of grafting on the nanoparticle segregation to the substrate. The nanoparticles were modeled as spheres and the polymers as bead-spring chains. The polymers of the grafts and the matrix are identical in nature. For a purely repulsive system, the nanoparticle density near the surface was found to decrease as the length of grafted chains and the number of grafts increased and in the bulk, the nanoparticles are well-dispersed. Whereas, in case of attractive systems with interparticle interactions on the order of thermal energy, the nanoparticles segregated to the substrate even more strongly, essentially forming clusters on the wall and in the bulk. However, due to the presence of grafted chains on the nanoparticles, the clusters formed in the bulk are structurally anisotropic. The effect of grafts on nanoparticle segregation to the surface was found to be qualitatively similar to the purely repulsive case.  相似文献   

13.
Electrochemistry is a key technology in nanoparticle science. For example electroplating offers novel routes to nanosized particles via arrested and templated electrodeposition. As the science underlying the preparation and assembly of nanoparticles matures methods of exploiting the novel properties of these new functional materials are being scrutinised. Electrochemistry is a suitable method for coupling particle activity to external circuitry.  相似文献   

14.
Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.  相似文献   

15.
Interaction of apohemoprotein with a covalently immobilized heme moiety onto a gold nanoparticle surface resulted in supramolecular hemoprotein-gold nanoparticle conjugates. The addition of an apohemoprotein dimer further led to a densely-packed hemoprotein-gold nanoparticle assembly, which was visualized by TEM and AFM measurements.  相似文献   

16.
Fullerene-Pt nanoparticle assemblies were prepared by attachment and immobilisation of different Pt nanoparticles on a gold electrode using molecular layers of C60 as a linker system. These assemblies were active for the methanol oxidation following treatment with CO.  相似文献   

17.
18.
制备纳米粒子组装体系是构筑纳米结构的重要方法之一,本文综述了纳米粒子组装体系的制备方法及其性质和应用研究。  相似文献   

19.
Time-resolved and static spectroscopic results on GaSe nanoparticle aggregates are presented to elucidate the exciton relaxation and diffusion dynamics. These results are obtained in room-temperature TOP/TOPO solutions at various concentrations. The aggregate absorption spectra are interpreted in terms of electrostatic coupling and covalent interactions between particles. The spectra at various concentrations may then be interpreted in terms of aggregate distributions calculated from a simple equilibrium model. These distributions are used to interpret concentration-dependent emission anisotropy kinetics and time-dependent emission spectral shifts. The emission spectra are reconstructed from the static emission spectra and decay kinetics obtained at a range of wavelengths. The results indicate that the aggregate z axis persistence length is about 9 particles. The results also show that the one-dimensional exciton diffusion coefficient is excitation wavelength dependent and has a value of about 2 x 10(-5) cm(2)/s following 406 nm excitation. Although exciton diffusion results in very little energy relaxation, subsequent hopping of trapped electron/hole pairs occurs by a Forster mechanism and strongly red shifts the emission spectrum.  相似文献   

20.
The direct synthesis of CdSe nanoparticles inside the core of PS-P4VP micellar structures has been utilized for the easy fabrication of 2-D CdSe nanoparticle arrays with variable sizes on a solid substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号