首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Small gold clusters (<1 nm) protected by a glutathione (GSH) monolayer were fractionated into six components by polyacrylamide gel electrophoresis, and their chemical compositions were investigated by electrospray ionization mass spectroscopy. The results demonstrate isolation of a series of magic-numbered gold clusters, Au18(SG)11, Au21(SG)12, Au25+/-1(SG)14+/-1, Au28(SG)16, Au32(SG)18, and Au39(SG)23. Their optical absorption spectra are highly structured with clear absorption onsets, which shift toward higher energies with reduction of the core size. These molecular-like gold clusters exhibit visible photoluminescence. The results reported herein provide helpful guidelines or starting points for further experimental and theoretical studies on structures, stabilities, and optical properties of monolayer-protected gold clusters.  相似文献   

2.
Small gold clusters (approximately 1 nm) protected by molecules of a tripeptide, glutathione (GSH), were prepared by reductive decomposition of Au(I)-SG polymers at a low temperature and separated into a number of fractions by polyacrylamide gel electrophoresis (PAGE). Chemical compositions of the fractionated clusters determined previously by electrospray ionization (ESI) mass spectrometry (Negishi, Y. et al. J.Am. Chem. Soc. 2004, 126, 6518) were reassessed by taking advantage of freshly prepared samples, higher mass resolution, and more accurate mass calibration; the nine smallest components are reassigned to Au10(SG)10, Au15(SG)13, Au18(SG)14, Au22(SG)16, Au22(SG)17, Au25(SG)18, Au29(SG)20, Au33(SG)22, and Au39(SG)24. These assignments were further confirmed by measuring the mass spectra of the isolated Au:S(h-G) clusters, where h-GSH is a homoglutathione. It is proposed that a series of the isolated Au:SG clusters corresponds to kinetically trapped intermediates of the growing Au cores. The relative abundance of the isolated clusters was correlated well with the thermodynamic stabilities against unimolecular decomposition. The electronic structures of the isolated Au:SG clusters were probed by X-ray photoelectron spectroscopy (XPS) and optical spectroscopy. The Au(4f) XPS spectra illustrate substantial electron donation from the gold cores to the GS ligands in the Au:SG clusters. The optical absorption and photoluminescence spectra indicate that the electronic structures of the Au:SG clusters are well quantized; embryos of the sp band of the bulk gold evolve remarkably depending on the number of the gold atoms and GS ligands. The comparison of these spectral data with those of sodium Au(I) thiomalate and 1.8 nm Au:SG nanocrystals (NCs) reveals that the subnanometer-sized Au clusters thiolated constitute a distinct class of binary system which lies between the Au(I)-thiolate complexes and thiolate-protected Au NCs.  相似文献   

3.
The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.  相似文献   

4.
Gold nanoparticles (NPs) have been prepared with three different capping systems: a tetralkylammonium salt, an alkanethiol, and a thiol-derivatized neoglycoconjugate. Also gold NPs supported on a porous TiO(2) substrate have been investigated. X-ray absorption spectroscopy (XAS) has been used to determine the electronic behavior of the different capped/supported systems regarding the electron/hole density of d states. Surface and size effects, as well as the role of the microstructure, have been also studied through an exhaustive analysis of the EXAFS (extended X-ray absorption fine structure) data. Very small gold NPs functionalized with thiol-derivatized molecules show an increase in d-hole density at the gold site due to Au-S charge transfer. This effect is overcoming size effects (which lead to a slightly increase of the d-electron density) for high S:Au atomic ratios and core-shell microstructures where an atomically abrupt Au-S interface likely does not exist. It has been also shown that thiol functionalization of very small gold NPs is introducing a strong distortion as compared to fcc order. To the contrary, electron transfer from reduced support oxides to gold NPs can produce a higher increase in d-electron density at the gold site, as compared to naked gold clusters.  相似文献   

5.
Small gold clusters (<1 nm), protected by monolayers of glutathione, N-(2-mercaptopropionyl)glycine, or mercaptosuccinic acid, were prepared by reducing the corresponding Au(I)-thiolate polymers and were fractionated by size using polyacrylamide gel electrophoresis (PAGE). Mass analysis of the fractionated clusters revealed that their core sizes varied with the molecular structures of the thiolates. This finding indicates that the reduction of the Au(I)-thiolate polymers yields small clusters whose growth is kinetically hindered by passivation with thiolates. Optical spectra of the clusters with identical compositions exhibited different profiles depending on the thiolate molecular structures. This observation implies that deformation of the underlying gold cores is induced by interligand interactions.  相似文献   

6.
We performed a global-minimum search for low-lying neutral clusters (Au(n)) in the size range of n=15-19 by means of basin-hopping method coupled with density functional theory calculation. Leading candidates for the lowest-energy clusters are identified, including four for Au(15), two for Au(16), three for Au(17), five for Au(18), and one for Au(19). For Au(15) and Au(16) we find that the shell-like flat-cage structures dominate the population of low-lying clusters, while for Au(17) and Au(18) spherical-like hollow-cage structures dominate the low-lying population. The transition from flat-cage to hollow-cage structure is at Au(17) for neutral gold clusters, in contrast to the anion counterparts for which the structural transition is at Au(16) (-) [S. Bulusu et al., Proc. Natl. Acad. Sci. U.S.A. 103, 8362 (2006)]. Moreover, the structural transition from hollow-cage to pyramidal structure occurs at Au(19). The lowest-energy hollow-cage structure of Au(17) (with C(2v) point-group symmetry) shows distinct stability, either in neutral or in anionic form. The distinct stability of the hollow-cage Au(17) calls for the possibility of synthesizing highly stable core/shell bimetallic clusters M@Au(17) (M=group I metal elements).  相似文献   

7.
The size-dependent electronic, structural, and magnetic properties of Mn-doped gold clusters have been systematically investigated by using relativistic all-electron density functional theory with generalized gradient approximation. A number of new isomers are obtained for neutral MnAu(n) (n = 1-16) clusters to probe the structural evolution. The two-dimensional (2D) to three-dimensional (3D) transition occurs in the size range n = 7-10 with manifest structure competitions. From size n = 13 to n = 16, the MnAu(n) prefers a gold cage structure with Mn atom locating at the center. The relative stabilities of the ground-state MnAu(n) clusters show a pronounced odd-even oscillation with the number of Au atoms. The magnetic moments of MnAu(n) clusters vary from 3 μ(B) to 6 μ(B) with the different cluster size, suggesting that nonmagnetic Au(n) clusters can serve as a flexible host to tailor the dopant's magnetism, which has potential applications in new nanomaterials with tunable magnetic properties.  相似文献   

8.
DFT/TDDFT calculations have been carried out for a series of silver and gold nanorod clusters (Ag(n), Au(n), n = 12-120) whose structures are of cigar-type. Pentagonal Ag(n) clusters with n = 49-121 and hexagonal Au(n) clusters with n = 14-74 were also calculated for comparison. Metal-metal distances, binding energies per atom, ionization potentials, and electron affinities were determined, and their trends with cluster size were examined. The TDDFT calculated excitation energies and oscillator strengths were fit by a Lorentz line shape modification, which gives rise to the simulated absorption spectra. The significant features of the experimental spectra for actual silver and gold nanorod particles are well reproduced by the calculations on the clusters. The calculated spectral patterns are also in agreement with previous theoretical results on different-type Ag(n) clusters. Many differences in the calculated properties are found between the Ag(n) and Au(n) clusters, which can be explained by relativistic effects.  相似文献   

9.
A cationic surfactant with a triallylammonium headgroup was cross-linked photochemically in the presence of a hydrophilic dithiol in the reverse micelle (RM) configuration. The interfacially cross-linked reverse micelles (ICRMs) are unusual templates for nanomaterials synthesis. Our previous work indicated that the ICRMs could extract anionic metal salts such as tetracholoroaurate into the hydrophilic interior, and the entrapped aurate was reduced without externally added reducing agent to form subnanometer luminescent gold clusters [Zhang, S.; Zhao, Y. ACS Nano 2011, 5, 2637-2646]. In this work, the bromide counterions were established as the reducing agent in the template synthesis. The reduction of tetrachloroaurate was proposed to happen through ligand exchange on the aurate by the bromide ions, reductive elimination of halogen, and disproportionation of the Au(I) intermediate. The size of the gold clusters could be tuned rationally by the water-to-surfactant ratio (W(0)) and the reducing agent. Monodisperse Au(4) and Au(9-10) clusters as well as larger Au(18) and Au(23) clusters were obtained from the ICRM templates. The as-prepared, metastable gold clusters were subject to reconstruction triggered by ligand exchange on the surface but could be stabilized through proper surface protection using a chelating dithiol.  相似文献   

10.
Electrostatically bonded SiO2.Au nanoparticle clusters form by reaction of 3-aminopropylsilane-modified SiO2 spheres (470 nm) with citrate-coated gold nanoparticles (9.7 nm) in water. Reaction of the clusters with 0.01 M KBr or HCl solution induces desorption of the gold nanoparticles within minutes. Reaction of the clusters with alkanethiols CnH2n+1SH (n = 2-18) at 80 degrees C causes the gold nanoparticles to form stringlike gold nanoparticle structures for thiols with short alkane groups (n = 2, 3, 4) and hexagonally packed arrays of gold nanoparticles for thiols with long alkane groups (n = 5-18) on the silica surfaces. The structural changes indicate that the bonding between Au and SiO2 nanoparticles has changed from electrostatic to van der Waals. Elemental analyses show that the reaction with hexanethiol does not affect the Au/Si/O composition of the SiO2.Au cluster, and Raman spectra on the hexanethiol-reacted cluster indicate the formation of a thiol SAM on the gold nanoparticles. The thiol-reacted SiO2.Au clusters display characteristic shifts of the absorption maxima in the visible spectra, and there is an inverse relation between these shifts and the lengths of the alkyl groups in the thiols. This relationship can be understood in terms of the free electron model for metals. The use of SiO2.Au nanoparticle clusters as coulometric sensors for the qualitative detection of thiols is discussed.  相似文献   

11.
The density functional method with relativistic effective core potential has been employed to investigate systematically the geometrical structures, relative stabilities, growth-pattern behaviors, and electronic properties of small bimetallic M(2)Au(n) (M = Ag, Cu; n = 1-10) and pure gold Au(n) (n ≤ 12) clusters. The optimized geometries reveal that M(2) substituted Au(n+2) clusters and one Au atom capped M(2)Au(n-1) structures are dominant growth patterns of the stable alloyed M(2)Au(n) clusters. The calculated averaged atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The analytic results exhibit that the planar structure Ag(2)Au(4) and Cu(2)Au(2) isomers are the most stable geometries of Ag(2)Au(n) and Cu(2)Au(n) clusters, respectively. In addition, the HOMO-LUMO gaps, charge transfers, chemical hardnesses and polarizabilities have been analyzed and compared further.  相似文献   

12.
Gold-phosphido-monolayer-protected clusters (MPCs) of 1-2-nm diameter, Au(x)(PR2)y, analogues of the well-known thiolate materials Au(x)(SR)y, were prepared by NaBH4 reduction of a mixture of HAuCl4.3H2O and a secondary phosphine PHR2 in tetrahydrofuran/water. In comparison to the Au-thiolate MPCs, fewer of the larger phosphido groups are required to cover the surface, and the Au-P bond is not cleaved as readily in reactions with small molecules as is its Au-S counterpart. 31P NMR spectroscopy provides a direct method to study cluster formation and the interaction of the phosphido ligand with the gold surface.  相似文献   

13.
A systematic study of bimetallic Au(n)M(2) (n = 1-6, M = Ni, Pd, and Pt) clusters is performed by using density functional theory at the B3LYP level. The geometric structures, relative stabilities, HOMO-LUMO gaps, natural charges and electronic magnetic moments of these clusters are investigated, and compared with pure gold clusters. The results indicate that the properties of Au(n)M(2) clusters for n = 1-3 diverge more from pure gold clusters, while those for n = 4-6 show good agreement with Au(n) clusters. The dissociation energies, the second-order difference of energies, and HOMO-LUMO energy gaps, exhibiting an odd-even alternation, indicate that the Au(4)M(2) clusters are the most stable structures for Au(n)M(2) (n = 1-6, M = Ni, Pd, and Pt) clusters. Moreover, we predict that the average atomic binding energies of these clusters should tend to a limit in the range 1.56-2.00 eV.  相似文献   

14.
In situ generated fluorescent gold nanoclusters (Au‐NCs) are used for bio‐imaging of three human cancer cells, namely, lung (A549), breast (MCF7), and colon (HCT116), by confocal microscopy. The amount of Au‐NCs in non‐cancer cells (WI38 and MCF10A) is 20–40 times less than those in the corresponding cancer cells. The presence of a larger amount of glutathione (GSH) capped Au‐NCs in the cancer cell is ascribed to a higher glutathione level in cancer cells. The Au‐NCs exhibit fluorescence maxima at 490–530 nm inside the cancer cells. The fluorescence maxima and matrix‐assisted laser desorption ionization (MALDI) mass spectrometry suggest that the fluorescent Au‐NCs consist of GSH capped clusters with a core structure (Au8‐13). Time‐resolved confocal microscopy indicates a nanosecond (1–3 ns) lifetime of the Au‐NCs inside the cells. This rules out the formation of aggregated Au–thiolate complexes, which typically exhibit microsecond (≈1000 ns) lifetimes. Fluorescence correlation spectroscopy (FCS) in live cells indicates that the size of the Au‐NCs is ≈1–2 nm. For in situ generation, we used a conjugate consisting of a room‐temperature ionic liquid (RTIL, [pmim][Br]) and HAuCl4. Cytotoxicity studies indicate that the conjugate, [pmim][AuCl4], is non‐toxic for both cancer and non‐cancer cells.  相似文献   

15.
The activation of dioxygen is a key step in CO oxidation catalyzed by gold nanoparticles. It is known that small gold cluster anions with even-numbered atoms can molecularly chemisorb O(2) via one-electron transfer from Au(n)(-) to O(2), whereas clusters with odd-numbered atoms are inert toward O(2). Here we report spectroscopic evidence of two modes of O(2) activation by the small even-sized Au(n)(-) clusters: superoxo and peroxo chemisorption. Photoelectron spectroscopy of O(2)Au(8)(-) revealed two distinct isomers, which can be converted from one to the other depending on the reaction time. Ab initio calculations show that there are two close-lying molecular O(2)-chemisorbed isomers for O(2)Au(8)(-): the lower energy isomer involves a peroxo-type binding of O(2) onto Au(8)(-), while the superoxo chemisorption is a slightly higher energy isomer. The computed detachment transitions of the superoxo and peroxo species are in good agreement with the experimental observation. The current work shows that there is a superoxo to peroxo chemisorption transition of O(2) on gold clusters at Au(8)(-): O(2)Au(n)(-) (n = 2, 4, 6) involves superoxo binding and n = 10, 12, 14, 18 involves peroxo binding, whereas the superoxo binding re-emerges at n = 20 due to the high symmetry tetrahedral structure of Au(20), which has a very low electron affinity. Hence, the two-dimensional (2D) Au(8)(-) is the smallest anionic gold nanoparticle that prefers peroxo binding with O(2). At Au(12)(-), although both 2D and 3D isomers coexist in the cluster beam, the 3D isomer prefers the peroxo binding with O(2).  相似文献   

16.
Colloidal Au/Ag multilayer films were prepared by alternate assembly of Au nanoparticles with a size of 5 +/- 1.2 nm and Ag nanoparticles with a size of 10 +/- 2.4 nm by using 1,5-pentanedithiol as cross-linker. Nanoporous gold films with a ligament size of 26.7 +/- 4.6 nm were then prepared by selective dissolution of sacrificial templates of silver particles in colloidal Au/Ag multilayers. The complete dissolution of Ag particles in colloidal Au/Ag multilayers in a mixture solution of 3.0 mM HAuCl(4) and 3 M NaCl took place at room temperature without damage of the colloidal Au film. This method to prepare nanoporous gold films was further extended to the preparation of nanoporous gold nanotubes by depositing colloidal Au/Ag film on the inner wall of anodic aluminum oxides (AAO) followed by dissolution of colloidal Ag and removal of AAO templates.  相似文献   

17.
Gold nanoparticles with an average diameter of approximately 8 nm (Au approximately 15,000) were irradiated with a tightly focused pulse laser at 355 nm in an aqueous solution of sodium dodecyl sulfate (SDS). Transient absorption spectra of the solution were measured at 25-100 ns after the laser irradiation. The observed transient absorption around 720 nm is assignable to the 2p <-- 1s transition of solvated electrons produced via multiple ionization of the gold nanoparticles. The nascent charge state of the gold nanoparticles was estimated from the transient absorbance. The dependence of the charge state on the SDS concentration shows a gradual increase from approximately +60 to approximately +70 in the 2 x 10(-4) to 3 x 10(-4) M range and an abrupt increase up to approximately +710 at the critical micelle concentration (CMC) of SDS, 8 x 10(-3) M. TEM measurements after laser irradiation reveal that the gold nanoparticles fragment into Au(approximately 1000) at a SDS concentration of 3 x 10(-4) M, whereas they are significantly dissociated into Au(approximately 100) above the CMC. The observed correlation between the nascent charge states and the extent of size reduction of the gold nanoparticles after the laser treatment indicates that the size reduction is caused by the Coulomb explosion of the highly charged gold nanoparticles. The mechanism of laser-induced size reduction is quantitatively discussed based on the liquid drop model.  相似文献   

18.
Phosphine-stabilized Au11 clusters in chloroform were reacted with glutathione (GSH) in water under a nitrogen atmosphere. The resulting Au:SG clusters exhibit an optical absorption spectrum similar to that of Au25(SG)18, which was isolated as one of the major products from chemically prepared Au:SG clusters (Negishi, Y. et al. J. Am. Chem. Soc. 2005, 127, 5261). Rigorous characterization by optical spectroscopy, electrospray ionization mass spectrometry, and polyacrylamide gel electrophoresis confirms that the Au25(SG)18 clusters were selectively obtained on the sub-100 mg scale by ligand exchange reaction under aerobic conditions. The ligand exchange strategy offers a practical and convenient method of synthesizing thiolated Au25 clusters on a large scale.  相似文献   

19.
Planar model catalysts were prepared by deposition of size-selected gold clusters containing up to seven atoms on rutile TiO2 (110). Molecular oxygen is observed to bind inefficiently to the surface, probably at oxygen vacancies, and some oxygen also appears to bind to the gold clusters. Stable CO binding is observed atop gold for catalysts prepared by Au and Au2 deposition, but not for larger Aun. CO oxidation activity is strongly dependent on cluster size, with Au7-prepared samples >50 times more reactive than samples prepared by Au or Au2 deposition  相似文献   

20.
A comparative study of the adsorption of an O2 molecule on pure Au(n+1)+ and doped MAu(n)+ cationic gold clusters for n = 3-7 and M = Ti, Fe is presented. The simultaneous adsorption of two oxygen atoms also was studied. This work was performed by means of first principles calculations based on norm-conserving pseudo-potentials and numerical basis sets. For pure Au4 +, Au6+, and Au7+ clusters, the O2 molecule is adsorbed preferably on top of low coordinated Au atoms, with an adsorption energy smaller than 0.5 eV. Instead, for Au5+ and Au8+, bridge adsorption sites are preferred with adsorption energies of 0.56 and 0.69 eV, respectively. The ground-state geometry of Au(n)+ is almost unperturbed after O2 adsorption. The electronic charge flows towards O2 when the molecule is adsorbed in bridge positions and towards the gold cluster when O2 is adsorbed on top of Au atoms, and both the adsorption energy and the O-O bond length of adsorbed oxygen increase when the amount of electronic charge on O2 increases. On the other hand, we studied the adsorption of an O2 molecule on doped MAu(n)+ clusters, leading to the formation of (MAu(n)O2+) ad complexes with different equilibrium configurations. The highest adsorption energy was obtained when both atoms of O2 bind on top of the M impurity, and it is larger for Ti doped clusters than for Fe doped clusters, showing an odd-even effect trend with size n, which is opposite for Ti as compared to Fe complexes. For those adsorption configurations of (MAu(n)O2+) ad involving only Au sites, the adsorption energy is similar to or smaller than that for similar configurations of Au(n)+1O2 + complexes. However, the highest adsorption energy of (MAu(n)O2+) ad is higher than that for (Au(n)+1O2+) ad by a factor of approximately 4.0 (1.2) for M = Ti (M = Fe). The trends with size n are rationalized in terms of O-O and O-M bond distances, as well as charge transfer between oxygen and cluster substrates. The spin multiplicity of those (MAu(n)O2+) ad complexes with the highest O2 adsorption energy is a maximum (minimum) for M = Fe (Ti), corresponding to parallel (anti-parallel) spin coupling of MAu(n)+ clusters and O2 molecules. Finally, we obtained the minimum energy equilibrium structure of complexes (Au(n)O2+) dis and (MAu(n)O2+) dis containing two separated O atoms bonded at different sites of Au(n)+ and MAu(n)+ clusters, respectively. For (MAu(n)O2 (+)) dis, the equilibrium configuration with the highest adsorption energy is stable against separation in MAu(n)+ and O2 fragments, respectively. Instead, for (Au(n)O2+) dis, only the complex n = 6 is stable against separation in Au(n)+ and O2 fragments. The maximum separation energy of (MAu(n)O2+) dis is higher than the O2 adsorption energy of (MAu(n)O2+) ad complexes by factors of approximately 1.6 (2.5), 1.6 (1.7), 1.5 (2.4), 1.5 (1.3), and 1.6 (1.8) for M = Ti (Fe) complexes in the range n = 3-7, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号