共查询到20条相似文献,搜索用时 15 毫秒
1.
Youhua Tao Ling Ai Huiyu Bai Xiaoya Liu 《Journal of polymer science. Part A, Polymer chemistry》2012,50(17):3507-3516
Photocrosslinked hyaluronic acid/poly(vinyl alcohol)‐styrylpyridinium (HA/PVA‐SbQ) hydrogels were synthesized for controlled antitumor drug delivery. The photocrosslinking reaction was rapid, and the time required for completely converting into the insoluble hydrogels was less than 500 s on exposure to 5 mW/cm2 UV light irradiation. The resulting hydrogels exhibited sensitivity to the pH value of the surrounding environment. Scanning electron microscopic analysis revealed that the morphology and the pore size of the hydrogels could be controlled by changing the ratio of HA and PVA‐SbQ in the formulations. Paclitaxel (PTX)‐loaded hydrogel could also be formed rapidly by UV irradiation of a mixed solution of HA/PVA‐SbQ and PTX. Release profiles of PTX from the hydrogels showed pH‐dependent and sustained manner. Moreover, our data revealed that PTX released from the HA hydrogels remained biologically active and had the capability to kill cancer cells. In contrast, control groups of HA hydrogels without PTX did not exhibit any cytotoxicity. This study demonstrates the feasibility of using HA‐based hydrogels as a potential carrier for chemotherapeutic drugs for cancer treatments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 相似文献
2.
Adriano V. Reis Marcos R. Guilherme Thais A. Moia Luiz H. C. Mattoso Edvani C. Muniz Elias B. Tambourgi 《Journal of polymer science. Part A, Polymer chemistry》2008,46(7):2567-2574
Synthesis and characterization of a new hydrogel were carried out using a chemically modified starch (starch‐M) consisting of coupling C?C bounds coming from glycidil methacrylate (GMA) onto the polysaccharide structure. 13C NMR, 1H NMR, and FT‐IR spectroscopies were used to confirm the incorporation of such groups onto the starch‐M. The hydrogel was prepared by a crosslinking polymerization of starch‐M using sodium persulfate as an initiating agent. The starch‐M hydrogel shows morphology clearly different from that of the raw starch film due to the presence of voids on its surface. The swelling process of the starch‐M hydrogel was not significantly affected by changes on the temperature or on pH of the surrounding liquid, indicating the such behavior can be then understood by a diffusional process, resulting from its physical–chemical interactions with the solvent. The values of the diffusional exponent n were on the order of 0.45–0.49 for the range of pHs investigated, demonstrating that the water transport mechanism of starch‐M hydrogel is more dependent on Fickian diffusion, that is, controlled by water diffusion. Such starch‐M hydrogel is a promising candidate to be used in transporting and in preserving acid‐responsive drugs, such as corticoids, for the treatment of colon‐specific diseases, for example, Crohn's disease. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2567–2574, 2008 相似文献
3.
Ultrasound has been recognized as an exciting tool to enhance the therapeutic efficacy in tumor chemotherapy owing to the triggered drug release, facilitated intracellular drug delivery, and improved spatial precision. Aiming for a precise localized drug delivery, novel dendritic polyurethane-based prodrug (DOX-DPU-PEG) was fabricated with a drug content of 18.9% here by conjugating DOX onto the end groups of the functionalized dendritic polyurethane via acid-labile imine bonds. It could easily form unimolecular micelles around 38 nm. Compared with the non-covalently drug-loaded unimolecular micelles (DOX@Ph-DPU-PEG), they showed excellent pH/ultrasound dual-triggered drug release performance, with drug leakage of only 4% at pH 7.4, but cumulative release of 14% and 88% at pH 5.0 without and with ultrasound, respectively. The ultrasound responsiveness was attributed to the unique strawberry-shaped topological structure of the DOX-DPU-PEG, in which DOX was embedded in the skin layer of the hydrophobic DPU cores. With ultrasound, the DOX-DPU-PEG unimolecular micelles possessed enhanced tumor growth inhibition than free DOX but showed no obvious cytotoxicity on the tumor cells without ultrasound. Such feature makes them promising potential for precise localized drug delivery. 相似文献
4.
本综述重点介绍了近年来普鲁兰多糖作为药物释放系统载体材料的研究进展及其在药物释放系统中的应用情况。 相似文献
5.
Kontoyianni C Sideratou Z Theodossiou T Tziveleka LA Tsiourvas D Paleos CM 《Macromolecular bioscience》2008,8(9):871-881
A hyperbranched aliphatic polyester has been functionalized with PEG chains to afford a novel water-soluble BH40-PEG polymer which exhibits unimolecular micellar properties, and is therefore appropriate for application as a drug-delivery system. The solubility of the anticancer drug paclitaxel was enhanced by a factor of 35, 110, 230, and 355 in aqueous solutions of BH40-PEG of 10, 30, 60, and 90 mg x mL(-1), respectively. More than 50% of the drug is released at a steady rate and release is almost complete within 10 h. The toxicity of BH40-PEG was assessed in vitro with A549 human lung carcinoma cells and found to be nontoxic for 3 h incubation up to a 1.75 mg x mL(-1) concentration while LD50 was 3.5 mg x mL(-1). Finally, it was efficiently internalized in cells, primarily in the absence of foetal bovine serum, while confocal microscopy revealed the preferential localization of the compound in cell nuclei. [Figure: see text]. 相似文献
6.
《Arabian Journal of Chemistry》2020,13(5):5262-5276
In this work a novel pH sensitive composite, polyacrylamide grafted succinyl chitosan intercalated bentonite (AAm-g-NB/SC) was prepared as a drug carrier system for the controlled delivery of paclitaxel. Characterization of the drug delivery system was carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis etc. The equilibrium swelling behaviour of the composite was studied and the result showed a maximum at pH 7.4. The in vitro drug release study of paclitaxel indicated that about 15.6% of drug release was found to be occurred at pH 1.2 within 16 h, whereas about 82.5% of drug release was occurred at the intestinal pH condition of 7.4. In vitro biocompatibility study was performed and the result showed good biocompatibility of the composite in the concentration range 6.25–100 µg/mL. The cytotoxicity assay was carried out in cancerous cell line of Human colorectal Adenocarcinoma. Mucous glycoprotein assay study showed that the drug delivery system having good apparent adhering property towards mucin. The investigation indicated that paclitaxel, an anticancer drug can be successfully entrapped in the AAm-g-NB/SC composite for the controlled and targeted delivery for colorectal cancer therapy. 相似文献
7.
8.
Tripodo G Pitarresi G Palumbo FS Craparo EF Giammona G 《Macromolecular bioscience》2005,5(11):1074-1084
In this work, INU, a natural polysaccharide, has been chemically modified in order to obtain new photocrosslinkable derivatives. To reach this goal, INU has been derivatized with MA thus obtaining four samples (INU-MA derivatives) as a function of the temperature and time of reaction. An aqueous solution of the derivative INU-MA1 was irradiated by using a UV lamp with an emission range from 250 to 364 nm and without using photoinitiators. The obtained hydrogel showed a remarkable water affinity but it underwent a partial degradation in simulated gastric fluid. To overcome this drawback, INU-MA1 was derivatized with SA thus obtaining the INU-MA1-SA derivative designed to produce a hydrogel showing a low swelling and an increased chemical stability in acidic medium. Ibuprofen, as a model drug, was loaded by soaking into INU-MA1 and INU-MA1-SA hydrogels and its release from these matrices was evaluated in simulated gastrointestinal fluids. INU-MA1 hydrogel showed the ability to quickly release the entrapped drug thus indicating its potential as a matrix for an oral formulation. INU-MA1-SA hydrogel showed a pH-responsive drug delivery. Therefore it is a promising candidate for controlled drug release in the intestinal tract. 相似文献
9.
Faten I. Abou El Fadl Nabila A Maziad Sabrnal H El-Hamouly H. R. Hassan 《高分子科学杂志,A辑:纯化学与应用化学》2018,55(2):107-115
Using polymer hydrogels and nanocomposites hydrogels still promising materials for many applications. Polyvinyl pyrrolidone (PVP) has been used with various polymers synthetic and natural for different applications. In this study PVP and hydroxyl ethyl methacrylate (HEMA) copolymer hydrogels were prepared by the aid of gamma radiation and the PVP/HEMA nanocomposite hydrogels were obtained by in situ adsorption and reduction method of iron salts and silver nitrates (AgNO3) to form PVP/HEMA-Fe3O4 and PVP/HEMA-Ag nanocomposites. The prepared hydrogels and the formed nanoparticles were studied by various techniques; FTIR, TEM, SEM and also the gel content and swelling behavior were evaluated. The prepared hydrogels and nanocomposites hydrogels were examined as drug delivery systems for Ciprofloxacin HCl as model drug. The PVP/HEMA-Fe3O4 nanocomposite gave the suitable load and release behavior towards Ciprofloxacin HCl. 相似文献
10.
聚氨酯生物吸收材料及其作为缓释药物载体的研究 总被引:6,自引:1,他引:6
合成了一系列新的紫外光固化生物吸收性聚氨酯水凝胶网络,测定了材料的含水率及水解性能,并以之为载体,研究了对异烟肼的药物缓释性能。结果表明,该水凝胶的含水率及降解速率与其结构有关,该水凝胶对异烟肼具有缓释作用,释放行为受扩散控制并符合Higuchi方程,表观扩散系数与水凝胶的含水率有关。 相似文献
11.
New pH-responsive saccharide hydrogels were designed and prepared using curdlan derivatives(curdlan-Bochistidine, CUR-HIS). The CUR-HIS hydrogels possessed highly porous structures. The swelling ratios of CUR-HIS hydrogels increased with the degree of substitution of Boc-histidine groups. And the addition of 0.5 mol/L Na Cl provoked a sharp reduction of swelling ratio of CUR-HIS hydrogels. Bovine serum albumin(BSA) can be efficiently encapsulated into CUR-HIS hydrogels. Moreover, the release profiles of BSA at different p H values from CUR-HIS hydrogels were significantly different. These hydrogels showed good biocompatibility in the cytotoxicity assays. The CUR-HIS hydrogels are of great potential in biomedical applications such as protein delivery systems. 相似文献
12.
Nanocomposite hydrogels were prepared by cross-linking of aqueous solutions of sulfonated polyacrylamide/sodium montmorillonite with chromium triacetate. The gelation process and effects of clay content and ionic strength on swelling behavior were investigated. X-ray diffraction patterns indicated that exfoliated type of microstructure was formed. Study of the gelation behavior using dynamic rheometery showed that the limiting storage modulus of the nanocomposite (NC) gels decreased with increasing clay content up to 1000 ppm, but it increased by further increase of Na+-montmorillonite concentration. It was also found that with increasing the clay content, the viscous energy dissipation properties of the nanocomposite gels increased. The swelling ratio of nanocomposite gels in tap water decreased as the concentration of the clay increased. However, nanocomposite gels showed higher resistance against syneresis in electrolyte solutions as compared with unfilled gels. Therefore, they are potentially good candidates for enhanced oil recovery applications. 相似文献
13.
Ting‐Ting Pan Wei‐Dong He Li‐Ying Li Wen‐Xing Jiang Chen He Jing Tao 《Journal of polymer science. Part A, Polymer chemistry》2011,49(10):2155-2164
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
14.
15.
Controlled drug delivery remains a research focus for public health to enhance patient compliance, drug efficiency and reduce
the side effects of drugs. Pectin, an edible plant polysaccharide, has been shown to be useful for the construction of drug
delivery systems for specific drug delivery. Several pectin derived formulations have been developed in our laboratory and
tested in vitro, ex vivo, and in vivo for the ability to deliver bioactive substances for therapeutic purposes in the context of interactions with living tissues.
Pectin derivatives carrying primary amine groups were more mucoadhesive and have shown potential in nasal drug delivery and
other mucosal drug delivery. Pectin derivatives with highly esterified galacturonic acid residues are more hydrophobic and
able to sustain the release of incorporated fragrances for a prolonged duration. Less esterified pectin derivatives are able
to penetrate deeper into the skin and may be useful in aromatherapy formulations. Pectin, in combination with zein, a corn
protein, forms hydrogel beads. The bound zein restricts bead swelling and retains the porosity of the beads; the pectin networks
shield the zein from protease attack. The complex beads are ideal vehicles for colon-specific drug delivery. Studies presented
in this paper indicate the flexibility and possibility to tailor pectin macromolecules into a variety of drug delivery systems
to meet different clinical requirements.
Mention of trade names or commercial products in this article is solely for the purpose of providing specific information
and does not imply recommendation or endorsement by the US Department of Agriculture. 相似文献
16.
A new type of organic/inorganic nanocomposite hydrogel was prepared by introducing small amount of natural montmorillonite (MOM) into a poly(vinyl alcohol) (PVA)/sulfonated polyester (PES) system. The crystalline structure and crystallinity degree were determined by differential scanning calorimetry (DSC) and wide angle X-ray spectroscopy (WAXS). The presence of PES leads to an increase in the crystallinity degree of the PVA matrix and a significant decrease in the melting temperature. The addition of small amount of clay (1-5%) resulted in an increase of the average crystallite dimension, crystallinity degree and melting temperature, as compared to the PVA/PES system. The presence of the clay resulted in a substantial increase on the free volume size, as suggesting by positron annihilation lifetime spectroscopy (PALS). This result suggests a lower packing efficiency of the PVA chain and the formation of a PVA-MOM interfacial layer. This interfacial layer and the increasing of the mobility of the PVA chain by the presence of the clay reflects also in a decrease of the glass transition temperature, determined by dynamic mechanical analysis. 相似文献
17.
Bahareh Khodashenas Mehdi Ardjmand Mazyar Sharifzadeh Baei Ali Shokuhi Rad Azim Akbarzadeh 《应用有机金属化学》2020,34(6):e5609
In the present study, pectin-coated gold nanoparticles (GNPs) were used as a candidate for curcumin drug delivery. The effect of the size of synthesized GNPs was examined, as an important factor on the yield of drug delivery. For this purpose, three different sizes of GNPs were first synthesized using a chemical method. The synthesized nanoparticles were then coated with pectin biopolymer. Finally, curcumin drug was loaded in a pectin@GNPs complex. Various methods such as UV–vis spectrophotometry, dynamic light scattering, scanning electron microscopy and Fourier-transform infrared spectroscopy were used to characterize the synthesized GNPs and pectin@GNPs. The encapsulation efficiency and the release percentage of the drug were calculated for two different pH values. Further, an antibacterial study was conducted. The results revealed that 100 nm GNPs had the highest encapsulation efficiency. An investigation of the release rate of curcumin drug at 37°C for 48 h indicated that the amount of drug released was higher in acidic pH than at pH 7.4 with a slow release rate. The electronic structure and the adsorption properties of pectin–GNPs complex were examined using the density functional theory method. 相似文献
18.
Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers
Wang N Dong A Tang H Van Kirk EA Johnson PA Murdoch WJ Radosz M Shen Y 《Macromolecular bioscience》2007,7(11):1187-1198
Poly(ethylene glycol) (PEG) is widely used as a water soluble carrier for polymer-drug conjugates. Herein, we report degradable linear PEG analogs (DPEGs) carrying multifunctional groups. The DPEGs were synthesized by a Michael addition based condensation polymerization of dithiols and PEG diacrylates (PEGDA) or dimethacrylates (PEGDMA). They were stable at pH 7.4 but quickly degraded at pH 6.0 and 5.0. Thus, DPEGs could be used as drug carriers without concern for their retention in the body. DPEGs could be made to carry such functional groups as terminal thiol or (meth)acrylate and pendant hydroxyl groups. The functional groups were used for conjugation of drugs and targeting groups. This new type of PEG analog will be useful for drug delivery and the PEGylation of biomolecules and colloidal particles. 相似文献
19.
Yang Zhou Aiping Fang Fazhan Wang Huili Li Quansheng Jin Lingjing Huang Chunmei Fu Jun Zeng Zhaohui Jin Xiangrong Song 《中国化学快报》2020,31(2):494-500
Nowadays,tremendous researches have been focused on the core-shell lipid-polymer nanoparticles(LPNs) due to the advantages of both liposomes and polymer nanoparticles.In this work,LPNs were applied to encapsulate brinzolamide(Brz-LPNs) for achieving sustained drug release,improving drug corneal permeation and enhancing drug topical therapeutic effect.The structure of Brz-LPNs was composed of poly(lactic-co-glycolic) acid(PLGA) nanocore which encapsulated Brz(Brz-NPs) and lipid shell around the core.Brz-LPNs were prepared by a modified thin-film dispersion method.With the parameters optimization of Brz-LPNs,optimal Brz-LPNs showed an average particle size of151.23±1.64 nm with a high encapsulation efficiency(EE) of 86.7%±2.28%.The core-shell structure of Brz-LPNs were confirmed by transmission electronic microscopy(TEM).Fourier transformed infrared spectra(FTIR) analysis proved that Brz was successfully entrapped into Brz-LPNs.Brz-LPNs exhibited obvious sustained release of Brz,compared with AZOPT^■ and Brz-LPs.Furthermore,the corneal accumulative permeability of Brz-LPNs significantly increased compared to the commercial available formulation(AZOPT^■) in vitro.Moreover,Brz-LPNs(1 mg/mL Brz) showed a more sustained and effective intraocular pressure(IOP) reduction than Brz-LPs(1 mg/mL) and AZOPT^■(10 mg/mL Brz) in vivo.In conclusion,Brz-LPNs,as promising ocular drug delivery systems,are well worth developing in the future for glaucoma treatment. 相似文献
20.
Zhe Zhang Li Chen Mingxiao Deng Yunyan Bai Xuesi Chen Xiabin Jing 《Journal of polymer science. Part A, Polymer chemistry》2011,49(13):2941-2951
In this article, novel smart hydrogels based on biodegradable pH sensitive poly(L ‐glutamic acid‐g‐2‐hydroxylethyl methacrylate) (PGH) chains and temperature‐sensitive hydroxypropylcellulose‐g‐acrylic acid (HPC‐g‐AA) segments were designed and synthesized. The influence of pH and temperature on the equilibrium swelling ratios of the hydrogels was discussed. The optical transmittance of the hydrogels was also changed as a function of temperature, which reflecting that the HPC‐g‐AA part of the hydrogels became hydrophobic at the temperature above the lower critical solution temperature (LCST). At the same time, the LCST of the hydrogels had a visible pH‐dependent behavior. Scanning electron microscopic analysis revealed the morphology of the hydrogels before and after enzymatic degradation. The biodegradation rate of the hydrogels was directly related to the PGH content and the pH value. The in vitro release of bovine serum albumin from the hydrogels were investigated. The release profiles indicated that both the HPC‐g‐AA and PGH contents played important roles in the drug release behaviors. These results show that the smart hydrogels seem to be of great promise in pH–temperature oral drug delivery systems. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献