首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Motion of water molecules in Aerosol OT [sodium bis(2-ethylhexyl) sulfosuccinate, AOT] reverse micelles with water content w(0) ranging from 1 to 5 has been explored both experimentally through quasielastic neutron scattering (QENS) and with molecular dynamics (MD) simulations. The experiments were performed at the energy resolution of 85 microeV over the momentum transfer (Q) range of 0.36-2.53 A(-1) on samples in which the nonpolar phase (isooctane) and the AOT alkyl chains were deuterated, thereby suppressing their contribution to the QENS signal. QENS results were analyzed via a jump-diffusion/isotropic rotation model, which fits the results reasonably well despite the fact that confinement effects are not explicitly taken into account. This analysis indicates that in reverse micelles with low-water content (w(0)=1 and 2.5) translational diffusion rate is too slow to be detected, while for w(0)=5 the diffusion coefficient is much smaller than for bulk water. Rotational diffusion coefficients obtained from this analysis increase with w(0) and are smaller than for bulk water, but rotational mobility is less drastically reduced than translational mobility. Using the Faeder/Ladanyi model [J. Phys. Chem. B 104, 1033 (2000)] of reverse micelle interior, MD simulations were performed to calculate the self-intermediate scattering function F(S)(Q,t) for water hydrogens. Comparison of the time Fourier transform of this F(S)(Q,t) with the QENS dynamic structure factor S(Q,omega), shows good agreement between the model and experiment. Separate intermediate scattering functions F(S) (R)(Q,t) and F(S) (CM)(Q,t) were determined for rotational and translational motion. Consistent with the decoupling approximation used in the analysis of QENS data, the product of F(S) (R)(Q,t) and F(S) (CM)(Q,t) is a good approximation to the total F(S)(Q,t). We find that the decay of F(S) (CM)(Q,t) is nonexponential and our analysis of the MD data indicates that this behavior is due to lower water mobility close to the interface and to confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay. However, rotational mobility of O-H bond vectors in the interfacial region remains fairly high due to the lower density of water-water hydrogen bonds in the vicinity of the interface.  相似文献   

2.
 In this publication we have studied the penetration process of water molecules into the hydrophobic core of a sodium octanoate micelle. The analysis of this phenomenon was based on a molecular dynamics computer simulation. We calculated the probability to find water molecules within a specific sphere which was adjusted in the center of the micelle. It turned out that the position of the micellar mass and geometry center was not too different, so that this reference point was well characterized. Water penetration was observed within the whole aggregate but if the radius is smaller than 300 pm, polar solvent molecules are very rarely observed. The results of our computer simulations suggest that significant water diffusion into the micelle occurs at larger distances from the micellar center with a lower threshold value of about 400 pm. In addition to these calculations, we used the Connolly algorithm in order to determine the solvent accessible surfaces of different micellar equilibrium structures. We observed large dynamical fluctuations with the formation of pores and channels. These structures are occasionally filled with water molecules. Received: 29 April 1998 Accepted: 27 May 1998  相似文献   

3.
Molecular dynamics simulations were used to characterize the binding of the chiral drugs chlorthalidone and lorazepam to the molecular micelle poly-(sodium undecyl-(L)-leucine-valine). The project’s goal was to characterize the nature of chiral recognition in capillary electrophoresis separations that use molecular micelles as the chiral selector. The shapes and charge distributions of the chiral molecules investigated, their orientations within the molecular micelle chiral binding pockets, and the formation of stereoselective intermolecular hydrogen bonds with the molecular micelle were all found to play key roles in determining where and how lorazepam and chlorthalidone enantiomers interacted with the molecular micelle.  相似文献   

4.
5.
The study is devoted to finding the parameters of the simplified monoatomic model of the hexane molecule for correct use in computer simulation of reverse micelles in the isobaric-isothermal (NPT) ensemble. The parameters allowing all the important properties of both pure hexane and reverse micelles in hexane to be reproduced have been determined. Application of the monatomic, rather than the fully atomic model of the hexane molecule can reduce the total number of atoms in the system by a factor of about 5, with the structure of the reverse micelles themselves being obtainable at the detailed fully atomic level.  相似文献   

6.
In this work, we present results from molecular dynamics simulations on the single-molecule relaxation of water within reverse micelles (RMs) of different sizes formed by the surfactant aerosol-OT (AOT, sodium bis(2-ethylhexyl)sulfosuccinate) in isooctane. Results are presented for RM water content w(0) = [H(2)O]/[AOT] in the range from 2.0 to 7.5. We show that translational diffusion of water within the RM can, to a good approximation, be decoupled from the translation of the RM through the isooctane solvent. Water translational mobility within the RM is restricted by the water pool dimensions, and thus, the water mean-squared displacements (MSDs) level off in time. Comparison with models of diffusion in confined geometries shows that a version of the Gaussian confinement model with a biexponential decay of correlations provides a good fit to the MSDs, while a model of free diffusion within a sphere agrees less well with simulation results. We find that the local diffusivity is considerably reduced in the interfacial region, especially as w(0) decreases. Molecular orientational relaxation is monitored by examining the behavior of OH and dipole vectors. For both vectors, orientational relaxation slows down close to the interface and as w(0) decreases. For the OH vector, reorientation is strongly affected by the presence of charged species at the RM interface and these effects are especially pronounced for water molecules hydrogen-bonded to surfactant sites that serve as hydrogen-bond acceptors. For the dipole vector, orientational relaxation near the interface slows down more than that for the OH vector due mainly to the influence of ion-dipole interactions with the sodium counterions. We investigate water OH and dipole reorientation mechanisms by studying the w(0) and interfacial shell dependence of orientational time correlations for different Legendre polynomial orders.  相似文献   

7.
The kinetics of water filling narrow single-walled carbon nanotubes was studied using molecular dynamics simulations. The time required to fully fill a nanotube was linear with respect to the tube length. We observed that water molecules could enter into nanotubes of different lengths, either from one end or from both ends. The probability of having a nanotube filled completely from both ends increased exponentially with the tube length. For short tubes, filling usually proceeded from only one end. For long tubes, filling generally proceeded from both tube ends over three stages, i.e., filling from one end, filling from both ends, and filling from both ends with the dipole reorientation of water molecules to give a concerted ordering within the fully filled tube. The water molecules in the partially filled nanotube were hydrogen bonded similarly to those in the fully filled nanotube. Simulations for the reference Lennard-Jones fluid without hydrogen bonds were also performed and showed that the filling behavior of water molecules can be attributed to strong intermolecular hydrogen bonding.  相似文献   

8.
The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.  相似文献   

9.
A molecular dynamics simulation study is presented for the relaxation of the polarizability anisotropy in liquid mixtures of formamide and water, using a dipolar induction scheme that involves the intrinsic polarizability and first hyperpolarizability tensors of the molecules, and the dipole-quadrupole polarizability of water species. The long time diffusive decay of the collective polarizability anisotropy correlations exhibits a substantial slowing down as the formamide mole fraction increases in the mixture. The diffusive times for the polarizability relaxation obtained from the authors' simulations are in good agreement with optical Kerr effect experimental data, and they are found to correlate nearly linearly with the estimated mean lifetimes of the hydrogen bonds within the mixture, suggesting that the relaxation of the hydrogen bond network is responsible to some extent for the collective relaxation of the polarizability anisotropy of the mixture. The short time behavior of the polarizability anisotropy relaxation was investigated by computing the nuclear response function, R(t), which is very rapidly dominated by the formamide contribution as it is added to water, due to the much larger polarizability anisotropy of formamide molecules compared to that of water. Several contributions to the Raman spectrum were also analyzed as a function of composition, and the dynamical origin of the different bands was determined.  相似文献   

10.
We have investigated the bonding of water molecules to the surfaces of ZnS nanoparticles (approximately 2-3 nm sphalerite) using temperature-programmed desorption (TPD). The activation energy for water desorption was derived as a function of the surface coverage through kinetic modeling of the experimental TPD curves. The binding energy of water equals the activation energy of desorption if it is assumed that the activation energy for adsorption is nearly zero. Molecular dynamics (MD) simulations of water adsorption on 3 and 5 nm sphalerite nanoparticles provided insights into the adsorption process and water binding at the atomic level. Water binds with the ZnS nanoparticle surface mainly via formation of Zn-O bonds. As compared with bulk ZnS crystals, ZnS nanoparticles can adsorb more water molecules per unit surface area due to the greatly increased curvature, which increases the distance between adjacent adsorbed molecules. Results from both TPD and MD show that the water binding energy increases with decreasing the water surface coverage. We attribute the increase in binding energy with decreasing surface water coverage to the increasing degree of surface under-coordination as removal of water molecules proceeds. MD also suggests that the water binding energy increases with decreasing particle size due to the further distance and hence lower interaction between adsorbed water molecules on highly curved smaller particle surfaces. Results also show that the binding energy, and thus the strength of interaction of water, is highest in isolated nanoparticles, lower in nanoparticle aggregates, and lowest in bulk crystals. Given that water binding is driven by surface energy reduction, we attribute the decreased binding energy for aggregated as compared to isolated particles to the decrease in surface energy that occurs as the result of inter-particle interactions.  相似文献   

11.
Motions of an alpha-cyclodextrin (alpha-CD) molecule on a dodecyl chain adopting the all-trans conformation were investigated in the presence of water by molecular dynamics simulations with CVFF force fields, where the trimethylammonium group of dodecyltrimethylammonium bromide (DTAB) is protruded outside the secondary hydroxyl rim of alpha-CD (the secondary-in structure). The alpha-CD molecule shuttled rapidly on the chain without decomplexation. This rapid motion is consistent with the NMR data. The plane formed by 6 O4 atoms of alpha-CD is most populated between the C6 and C7 atoms of DTAB. This structure is very close to that estimated by NMR. The alpha-CD molecule underwent a restricted rotation in a range of 60 degrees with regard to the plane of the dodecyl chain: this plane at the most population is middle between the two diagonal lines of the normal hexagon formed by 6 O4 atoms of alpha-CD. The published NMR data were reanalyzed in terms of the rotation angle, and a slightly better structure was obtained. The distortion of the alpha-CD cavity from the normal hexagon was decreased upon complex formation with DTAB. The deviation of the center of alpha-CD from the center of the dodecyl chain predicted by molecular dynamics simulations is consistent with the NMR data. The secondary-in structure is energetically more stable than the primary-in structure, as calculated by molecular mechanics with CVFF and Amber force fields. This result is consistent with the NMR data. Molecular dynamics simulations were also carried out for the primary-in structure. Some of the results are close to those of the secondary-in structure.  相似文献   

12.
Photoisomerization of the retinylidene chromophore of rhodopsin is the starting point in the vision cascade. A counterion switch mechanism that stabilizes the retinal protonated Schiff base (PSB) has been proposed to be an essential step in rhodopsin activation. On the basis of vibrational and UV-visible spectroscopy, two counterion switch models have emerged. In the first model, the PSB is stabilized by Glu181 in the meta I state, while in the most recent proposal, it is stabilized by Glu113 as well as Glu181. We assess these models by conducting a pair of microsecond scale, all-atom molecular dynamics simulations of rhodopsin embedded in a 99-lipid bilayer of SDPC, SDPE, and cholesterol (2:2:1 ratio) varying the starting protonation state of Glu181. Theoretical simulations gave different orientations of retinal for the two counterion switch mechanisms, which were used to simulate experimental 2H NMR spectra for the C5, C9, and C13 methyl groups. Comparison of the simulated 2H NMR spectra with experimental data supports the complex-counterion mechanism. Hence, our results indicate that Glu113 and Glu181 stabilize the retinal PSB in the meta I state prior to activation of rhodopsin.  相似文献   

13.
We present a molecular dynamics study of the liquid and plastic crystalline phases of CCl(3)Br. We investigated the short-range orientational order using a recently developed classification method and we found that both phases behave in a very similar way. The only differences occur at very short molecular separations, which are shown to be very rare. The rotational dynamics was explored using time correlation functions of the molecular bonds. We found that the relaxation dynamics corresponds to an isotropic diffusive mode for the liquid phase but departs from this behavior as the temperature is decreased and the system transitions into the plastic phase.  相似文献   

14.
To investigate the backbone dynamics of proteins 15N longitudinal and transverse relaxation experiments combined with {1H, 15N{ NOE measurements together with molecular dynamics simulations were carried out using ribonuclease T1 and the complex of ribonuclease T1 with 2′GMP as a model protein. The intensity decay of individual amide cross peaks in a series of (1H, 15N)HSQC spectra with appropriate relaxation periods was fitted to a single exponential by using a simplex algorithm in order to obtain 15N T1 and T2 relaxation times. The relaxation times were analyzed in terms of the “model-free” approach introduced by Lipari and Szabo. In addition, a nanosecond molecular dynamics (MD ) simulation of ribonuclease T1 and its 2′GMP complex in water was carried out. The angular reorientations of the backbone amide groups were classified with several coordinate frames following a transformation of NH vector trajectories. In this study, NH librations and backbone dihedral angle fluctuations were distinguished. The NH bond librations were found to be similar for all amides as characterized by correlation times of librational motions in a subpicosecond scale. The angular amplitudes of these motions were found to be about 10°–12° for out-of-plane displacements and 3°–5° for the in-plane displacement. The contributions from the much slower backbone dihedral angle fluctuations strongly depend on the secondary structure. The dependence of the amplitude of local motion on the residue location in the backbone is in good agreement with the results of NMR relaxation measurements and the X-ray data. The protein dynamics is characterized by a highly restricted local motion of those parts of the backbone with defined secondary structure as well as by a high flexibility in loop regions. Comparison of the MD and NMR data of the free liganded enzyme ribonuclease T1 clearly indicates a restriction of the mobility within certain regions of the backbone upon inhibitor binding. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The modulation of the properties and function of cell membranes by small volatile substances is important for many biomedical applications. Despite available experimental results, molecular mechanisms of action of inhalants and organic solvents, such as acetone, on lipid membranes remain not well understood. To gain a better understanding of how acetone interacts with membranes, we have performed a series of molecular dynamics (MD) simulations of a POPC bilayer in aqueous solution in the presence of acetone, whose concentration was varied from 2.8 to 11.2 mol%. The MD simulations of passive distribution of acetone between a bulk water phase and a lipid bilayer show that acetone favors partitioning into the water-free region of the bilayer, located near the carbonyl groups of the phospholipids and at the beginning of the hydrocarbon core of the lipid membrane. Using MD umbrella sampling, we found that the permeability barrier of ∼0.5 kcal/mol exists for acetone partitioning into the membrane. In addition, a Gibbs free energy profile of the acetone penetration across a bilayer demonstrates a favorable potential energy well of −3.6 kcal/mol, located at 15–16 Å from the bilayer center. The analysis of the structural and dynamics properties of the model membrane revealed that the POPC bilayer can tolerate the presence of acetone in the concentration range of 2.8–5.6 mol%. The accumulation of the higher acetone concentration of 11.2 mol% results, however, in drastic disordering of phospholipid packing and the increase in the membrane fluidity. The acetone molecules push the lipid heads apart and, hence, act as spacers in the headgroup region. This effect leads to the increase in the average headgroup area per molecule. In addition, the acyl tail region of the membrane also becomes less dense. We suggest, therefore, that the molecular mechanism of acetone action on the phospholipid bilayer has many common features with the effects of short chain alcohols, DMSO, and chloroform.  相似文献   

16.
Control of the size and agglomeration of micellar systems is important for pharmaceutical applications such as drug delivery. Although shape-related transitions in surfactant solutions are studied experimentally, their molecular mechanisms are still not well understood. In this study, we use coarse-grained molecular dynamics simulations to describe micellar assemblies of pentaethylene glycol monododecyl ether (C(12)E(5)) in aqueous solution at different concentrations. The obtained size and aggregation numbers of the aggregates formed are in very good agreement with the available experimental data. Importantly, increase of the concentration leads to a second critical micelle concentration where a transition to rod-like aggregates is observed. This transition is quantified in terms of shape anisotropy, together with a detailed structural analysis of the micelles as a function of aggregation number.  相似文献   

17.
Surfactant molecules self-assemble in aqueous solutions to form various micellar structures such as spheres, rods, or lamellae. Although phase transitions in surfactant solutions have been studied experimentally, their molecular mechanisms are still not well understood. In this work, we show that molecular dynamics (MD) simulations using the coarse-grained (CG) MARTINI force field and explicit CG solvent, validated against atomistic MD studies, can accurately represent micellar assemblies of cetyltrimethylammonium chloride (CTAC). The effect of salt on micellar structures is studied for aromatic anionic salts, e.g., sodium salicylate, and simple inorganic salts, e.g., sodium chloride. Above a threshold concentration, sodium salicylate induces a sphere to rod transition in the micelle. CG MD simulations are shown to capture the dynamics of this shape transition and support a mechanism based on the reduction in the micelle-water interfacial tension induced by the adsorption of the amphiphilic salicylate ions. At the threshold salt concentration, the interface is nearly saturated with adsorbed salicylate ions. Predictions of the effect of salt on the micelle structure in different CG solvent models, namely, single-site standard water and three-site polarizable water, show qualitative agreement. This suggests that phase transitions in aqueous micelle solutions could be investigated by using standard CG water models which allow for 3 orders of magnitude reduction in the computational time as compared to that required for atomistic MD simulations.  相似文献   

18.
The time-resolved orientational anisotropies of the OD hydroxyl stretch of dilute HOD in H(2)O confined on a nanometer length scale in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles are studied using ultrafast infrared polarization and spectrally resolved pump-probe spectroscopy, and the results are compared to the same experiments on bulk water. The orientational anisotropy data for three water nanopool sizes (4.0, 2.4, and 1.7 nm) can be fitted well with biexponential decays. The biexponential decays are analyzed using a wobbling-in-a-cone model that involves fast orientational diffusion within a cone followed by slower, full orientational relaxation. The data provide the cone angles, the diffusion constants for motion within the cones, and the final diffusion constants as a function of the nanopool size. The two processes can be interpreted as a local angular fluctuation of the OD and a global hydrogen bond network rearrangement process. The trend in the relative amplitudes of the long and short exponential decays suggest an increasing rigidity as the nanopool size decreases. The trend in the long decay constants indicates a longer hydrogen bond network rearrangement time with decreasing reverse micelle size. The anisotropy measurements for the reverse micelles studied extrapolate to approximately 0.33 rather than the ideal value of 0.4, suggesting the presence of an initial inertial component in the anisotropy decay that is too fast to resolve. The very fast decay component is consistent with initial inertial orientational motion that is seen in published molecular-dynamics simulations of water in AOT reverse micelles. The angle over which the inertial orientational motion occurs is determined. The results are in semiquantitative agreement with the molecular-dynamics simulations.  相似文献   

19.
A new interatomic potential for dissociative water was developed for use in molecular dynamics simulations. The simulations use a multibody potential, with both pair and three-body terms, and the Wolf summation method for the long-range Coulomb interactions. A major feature in the potential is the change in the short-range O-H repulsive interaction as a function of temperature and/or pressure in order to reproduce the density-temperature curve between 273 K and 373 at 1 atm, as well as high-pressure data at various temperatures. Using only the change in this one parameter, the simulations also reproduce room-temperature properties of water, such as the structure, cohesive energy, diffusion constant, and vibrational spectrum, as well as the liquid-vapor coexistence curve. Although the water molecules could dissociate, no dissociation is observed at room temperature. However, behavior of the hydronium ion was studied by introduction of an extra H+ into a cluster of water molecules. Both Eigen and Zundel configurations, as well as more complex configurations, are observed in the migration of the hydronium.  相似文献   

20.
We applied the multibaric-multithermal (MUBATH) molecular dynamics (MD) algorithm to an alanine dipeptide in explicit water. The MUBATH MD simulation covered a wide range of conformational space and sampled the states of PII, C5, alphaR, alphaP, alphaL, and C7(ax). On the other hand, the conventional isobaric-isothermal simulation was trapped in local-minimum free-energy states and sampled only a few of them. We calculated the partial molar enthalpy difference DeltaH and partial molar volume difference DeltaV among these states by the MUBATH simulation using the AMBER parm99 and AMBER parm96 force fields and two sets of initial conditions. We compared these results with those from Raman spectroscopy experiments. The Raman spectroscopy data of DeltaH for the C5 state against the PII state agreed with both MUBATH data with the AMBER parm96 and parm99 force fields. The partial molar enthalpy difference DeltaH for the alphaR state and the partial molar volume difference DeltaV for the C5 state by the Raman spectroscopy agreed with those for the AMBER parm96 force field. On the other hand, DeltaV for the alphaR state by the Raman spectroscopy was consistent with our AMBER-parm99 force-field result. All the experimental results fall between those of simulations using AMBER parm96 and parm99 force fields, suggesting that the ideal force-field parameters lie between those of AMBER parm96 and parm99.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号