首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
To evaluate the effect of geminal substitution at silicon on 1-sila- and 1,3-disilacyclobutanes' strain energies, their 2+2 cycloreversion enthalpies, and Si=C pi-bond energies in silenes, an ab initio MO study of silenes, R2Si=CH2 (1), 1-silacyclobutanes, cyclo-R2Si(CH2)3 (2), and 1,3-disilacyclobutanes, cyclo-(R2SiCH2)2 (3), was performed using the level of theory denoted MP4/TZ(d)//MP2/6-31G(d) (TZ means the 6-311G(d) basis set for elements of the second period and hydrogen, and the McLean-Chandler (12s,9p)/[6s,5p](d) basis set for the third period elements). In the series R = H, CH3, SiH3, CH3O, NH2, Cl, F, the growth of the reaction enthalpies and strain energies is proportional to the substituents' electronegativities. 2+2 cycloreversion of 2 is endothermic by 40.6-63.1 kcal/mol, whereas that of 3 is endothermic by 72.7-114.2 kcal/mol. On going from a silicon to a fluorine substituent at the sp2-hybridized silicon atom, the pi-bond energy in 1 weakens by 11.3 kcal/mol, and the Si=C bond length shortens by 0.053 A. The effect of substituents' electronegativities at the double-bonded silicon atom in silenes is formulated as follows: the higher electronegativity, the shorter and the weaker the Si=C pi-bond. The latter is rationalized in terms of more strained geometry resulting from the energetic cost for planarizing the R2SiC moiety. The enthalpies of the ring-opening reaction are 68.0-80.1 kcal/mol (a cleavage of the Si-C bond in 3), 65.0-76.4 kcal/mol (a cleavage of the Si-C bond in 2), and 58.0-64.9 kcal/mol (a cleavage of the C-C bond in 2). The pronounced difference in the enthalpies of 2+2 cycloreversion of 1-sila- and 1,3-disilacyclobutanes is mainly due to the difference in the enthalpies of diradicals' decomposition. The decomposition of diradicals resulting from a cleavage of C-C and Si-C bonds in 2 is exothermic by 24.3-3.3 kcal/mol (apart from the difluoro derivative which is endothermic by 5.1 kcal/mol) and 27.0-13.3 kcal/mol, respectively. The decomposition of a 1,4-diradical resulting from ring opening of 3, apart from the disilyl derivative, is the endothermic process for which the enthalpy varies from 10.6 to 40.4 kcal/mol.  相似文献   

2.
The effect of the nature of substituents at sp2-hybridized silicon atom in the R2Si=CH2 (R = SiH3, H, Me, OH, Cl, F) molecules on the structure and energy characteristics of complexes of these molecules with ammonia, trimethylamine, and tetrahydrofuran was studied by the ab initio (MP4/6-311G(d)//MP2/6-31G(d)+ZPE) method. As the electronegativity, χ, of the substituent R increases, the coordination bond energies, D(Si← N(O)), increase from 4.7 to 25.9 kcal mol−1 for the complexes of R2Si=CH2 with NH3, from 10.6 to 37.1 kcal mol−1 for the complexes with Me3N, and from 5.0 to 22.2 kcal mol−1 for the complexes with THF. The n-donor ability changes as follows: THF ≤ NH3 < Me3N. The calculated barrier to hindered internal rotation about the silicon—carbon double bond was used as a measure of the Si=C π-bond energy. As χ increases, the rotational barriers decrease from 18.9 to 5.2 kcal mol−1 for the complexes with NH3 and from 16.9 to 5.7 kcal mol−1 for the complexes with Me3N. The lowering of rotational barriers occurs in parallel to the decrease in D π(Si=C) we have established earlier for free silenes. On the average, the D π(Si=C) energy decreases by ∼25 kcal mol−1 for NH3· R2Si=CH2 and Me3N·R2Si=CH2. The D(Si←N) values for the R2Si=CH2· 2Me3N complexes are 11.4 (R = H) and 24.3 kcal mol−1 (R = F). sp2-Hybridized silicon atom can form transannular coordination bonds in 1,1-bis[N-(dimethylamino)acetimidato]silene (6). The open form (I) of molecule 6 is 35.1 and 43.5 kcal mol−1 less stable than the cyclic (II, one transannular Si←N bond) and bicyclic (III, two transannular Si←N bonds) forms of this molecule, respectively. The D(Si←N) energy for structure III was estimated at 21.8 kcal mol−1. Dedicated to Academician N. S. Zefirov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1952–1961, September, 2005.  相似文献   

3.
The mechanism of the oxide extraction reaction between singlet silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide has been investigated with density functional theory, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6‐311G(d,p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists two steps, the first step is the two reactants firstly form an intermediate (INT) through a barrier‐free exothermic reaction; the second step is the INT then generates a product via a transition state (TS). This kind reaction has similar mechanism, when the silylene carbene and its derivatives [X2Si = C: (X = H, F, Cl, CH3)] and ethylene oxide close to each other, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Si = C: gives a p → p donor–acceptor bond, thereby leading to the formation of INT. As the p → p donor–acceptor bond continues to strengthen (that is, the C? O bond continues to shorten), the INT generates product (P + C2H4) via TS. It is the substituent electronegativity, which mainly affects the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

4.
Reactions of organosilicon thiocarbamide dioxides {[R3Si(CH2)3NH]2CSO2, R = Et (I), O1.5 (II)} with methylamine and ammonia were studied. The reaction of compound I with ammonia involves, along with the substitution of the NHC(SO2)NH fragment by a guanidine residue, Si-C bond cleavage to form an oligomer comprising [O(Et)Si(CH2)3NH]2C=NH and [O1.5Si(CH2)3NH]2C=NH elementary units. The reactions of compound II with methylamine and ammonia resulted in the synthesis of organosilicon polymers containing guanidine groups. These polymers exhibit a high sorption capacity toward Ag(I).  相似文献   

5.
The mechanism of the sulfur extraction reaction between singlet silylene carbine and its derivatives and thiirane has been investigated with density functional theory (DFT), including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by B3LYP/6-311G(d, p) method. From the potential energy profile, it can be predicted that the reaction pathway of this kind consists in two steps: (1) the two reactants firstly form an intermediate through a barrier-free exothermic reaction; (2) the intermediate then isomerizes to a product via a transition state. This kind of reactions has similar mechanism: when the silylene carbene and its derivatives [X2Si=C: (X = H, F, Cl, CH3)] and thiirane approach each other, the shift of 3p lone electron pair of S in thiirane to the 2p unoccupied orbital of C in X2Si=C: gives a pp donor-acceptor bond, thereby leading to the formation of intermediate (INT). As the pp donor-acceptor bond continues to strengthen (that is the C-S bond continues to shorten), the intermediate (INT) generates product (P + C2H4) via transition state (TS). It is the substituent electronegativity that mainly affect the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater.  相似文献   

6.
Molecular geometries of fifty-six metallatranes N(CH2CH2Y)3M-X and fifty-six carbon analogs HC(CH2CH2Y)3M-X (M = Si, Ge; X = H, Me, OH, F; Y = CH2, O, NH, NMe, NSiMe3, PH, S) were optimized by the DFT method. Correlations between changes in the bond orbital populations, electron density ρ(r), electron density laplacian ∇2ρ(r), |λ1|/λ3 ratio, electronic energy density E(r), bond lengths, and displacement of the central atom from the plane of three equatorial substituents and the nature of substituents X and Y were studied. As the number of electronegative substituents at the central atom increases, the M←N, M-X, and M-Y bond lengths decrease, while the M←N bond strength and the electron density at critical points of the M←N, M-X, and M-Y bonds increase. An increase in electronegativity of a substituent (X or Y) is accompanied by a decrease in the ionicities of the other bonds (M-X, M-Y, and M←N) formed by the central atom (Si, Ge). A new molecular orbital diagram for bond formation is proposed, which takes into account the interaction of all five substituents at the central atom (M = Si, Ge) in atrane molecules. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 448–460, March, 2006.  相似文献   

7.
The alternative additions of the hydrogen atom and methyl, aminyl, and methoxyl radicals to the double bond of CH2=Y (Y = CHR, CR2, CHCH=CH2, CHPh, NH, O) compounds are theoretically analyzed using the intersecting parabolas method and DFT. The enthalpies, activation energies, and geometric parameters of the transition state in the reactions R· + CH2=Y → RCH2Y· and R· + CH2=Y → RYC·H2 are calculated. The results obtained by the two methods are compared with experimental data. The competing alternative radical additions to the multiple bonds are governed by the enthalpies of the reactions.  相似文献   

8.
The mechanism of the unimolecular isomerisation reaction of the silicon and germanium analogues of bicyclo[1.1.0]butane with various kinds of substituents (X4R6; X?=?Si and Ge, R=H, CH3, t-Bu and SiH3) to the corresponding cyclobutene analogues has been investigated by ab initio molecular orbital and DFT methods. Several reaction mechanisms were considered. They are roughly divided into two types; (1) skeletal rearrangement and (2) substituent migration. It was found that substituents (R) have the leading effect on the reaction mechanism but the partial or full replacement of the skeletal silicon atoms by germanium atoms has some important effects as well. Furthermore, the character of the bridge bond of the long-bond and short-bond isomers of these bicyclic compounds was investigated and discussed in comparison with the ?? bond in ethene and disilene by the CiLC analysis.  相似文献   

9.
Quantum chemical calculations of the dissociation energy of the C-H bond in the ??-hydroperoxide fragment of Me2CHOOH were carried out. It was shown that abstraction of H atom is accompanied by dissociation of the O-O bond. Density functional calculations of transition states of the reactions of ·CH3, CH3OO·, and HO2 · radicals with the C-H bond in the ??-hydroperoxide fragment of Me2CHOOH were carried out. It was established that H atom abstraction is accompanied by concerted dissociation of the O-O bond. For 45 peroxides R1R2CHOOH, R1R2CHOOR3, and R1R2CHOOC(O)R3 (R1, R2 = H, Me, Et, Ph, H2C=CH), the enthalpies of H atom abstraction from the C-H bond in the a-hydroperoxide fragment with fragmentation of the peroxides at the O-O bond were calculated. The kinetic parameters for 12 classes of radical abstraction reactions with fragmentation of molecules were calculated from experimental data within the framework of the model of intersecting parabolas. The activation energies and reaction rate constants of H atom abstraction from C-H bonds of a-peroxide fragments involving peroxyl and alkyl radicals were determined for 45 peroxides of different structure.  相似文献   

10.
Geometries have been optimized using molecular-orbital calculations (a) with a 4-31G Gaussian basis set for carbanions CH2X? where X = H, CH3, NH2, OH, F, C?CH, CH?CH2, CHO, COCH3, CN, and NO2; and (b) with an STO -3G basis set for methyl acetate and acetyl deprotonated methyl acetate. All the carbanions containing unsaturated substituents are planar, with a considerable shortening of the C? X bond. Carbanions containing saturated substituents are pyramidal with the out-of-plane angle α increasing with the electronegativity of the substituent. Double-zeta basis set calculations give proton affinities over the range 449 (for CH3CH2?) to 355 kcal/mol (for CH2NO2?), with all unsaturated anions having smaller affinities than saturated anions. The correlation of proton affinities with 1s binding energies, and with charges on both the carbon of the anion and on the acidic proton of the neutral molecule are examined.  相似文献   

11.
17O, 29Si, and 13C NMR spectra of more than 100 mono-, di-, tri- and tetra-alkoxysilanes R4−nSi(OR′)n; R = CnH2n+1, Ph, CH2Cl, CH2Br; R′ = CnH2n+1, CH2Ph, CH2CH2Cl, CH2CHCH2, CH2CCH, CH2CF3. (CH2)3Cl, (CH2)3CN have been studied.Linear relationships between the chemical shifts of 17O, 29Si, 13C in alkoxysilanes and the inductive and steric constants of substituents R and R′ were observed. Different transmission of electronic effects along the SiO bond in various directions was revealed by means of 13C, 29Si, 17O NMR spectroscopy and correlation analysis. The results are discussed in terms of (pd)π-bonding between the oxygen and silicon atoms in compounds containing an SiO bond.  相似文献   

12.
The enthalpies and temperatures of melting of RSi(CH3)3, R4Si, R3P, R3As, R3Sb, R3Bi, R2Te and R2Hg (R=C6F5) were obtained by scanning calorimetry measurements. The pressure of the saturated and unsaturated vapors of RSi(CH3)3, R2Si(CH3)2, R4Si, R3Ga, R3P, R3As, R3Sb, R3Bi, R2Te and R2Hg has been measured by the static method with a membrane-gauge manometer. It was established that all investigated substances proceeded to vapor as monomers. Equations approximating the dependences of saturated vapor pressures on temperature and the enthalpies and entropies of vaporization were obtained. Grafite films with silicon intercalated up to 25 at.% were grown by CVD using R4Si as a precursor. These films showed semiconductor properties in the temperature interval 80–300 K.  相似文献   

13.
Trivalent-Pentavalent Phosphorus Compounds/Phosphazenes. IV. Preparation and Properties of New N-silylated Diphosphazenes Phosphazeno-phosphanes, R3P = N? P(OR′) 2 (R = CH3, N(CH3)2; R′ = CH2? CF3) react with trimethylazido silane to give N-silylated diphosphazenes, R3P = N? P(OR′)2 = N? Si(CH3)3 compounds decompose by atmospherical air to phosphazeno-phosphonamidic acid esters, R3 P?N? P(O)(O? CH2? CF3)(NH2). Thermolysis of diphosphazene R3P = N? P(OR′) 2 = N? Si(CH3)3 (R = CH3, R′ = CH2? CF3) produces phosphazenyl-phosphazenes [N?P(N?P(CH3)3)OR′] n. The compounds are characterized by elementary analysis, IR-, 1H-, 29Si-, 31P-n.m.r., and mass spectroscopy.  相似文献   

14.
The reaction of RSiCl3 (R=CH3, C2H5, C6H5) and R2SiCl2 (R=CH3) with one mole of the phosphenimidous amides R2N–P=NR [R=R=Si(CH3)3; R=Si(CH3)3, R=C(CH3)3] yieds a four membered PN2Si-ring system under elimination of (CH3)3SiCl.  相似文献   

15.
The reaction of RSiCl3 (R=CH3, C2H5, C6H5) and R2SiCl2 (R=CH3) with one mole of the phosphenimidous amides R2N–P=NR [R=R=Si(CH3)3; R=Si(CH3)3, R=C(CH3)3] yieds a four membered PN2Si-ring system under elimination of (CH3)3SiCl.  相似文献   

16.
The reactivity of organylethynyl silatranylmethyl chalcogenides RC=CYCH2Si(OCH2CH2)3N (R=Ph, Me3Si; Y=S, Se, Te) in the reaction with methyl iodide depending on the nature of the chalcogen Y, the substituent R at the triple bond, and the reaction conditions was studied. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2550–2551, December, 1998.  相似文献   

17.
A strict linear correlation is found between the length of the coordination bond Si-N in 1-substituted silatranes XCH2Si(OCH2CH2)3N and the inductive constant I of substituent XCH2. This equation is also valid for other compounds of the RSi(OCH2CH2)3N type, in which silicon is bound to an sp 2-carbon atom (R = CH = CH2, Ph, 2-furyl, 2-thienyl, etc.). The deduced correlation equation allows determination of earlier unknown and refinement of existing 4I constants of substituents R on the basis of X-ray diffraction Si-N bond lengths in silatranes RSi(OCH2CH2)3N. Deviations from the correlation point to noninductive interaction between substituent R and the silantranyl group (R = R'O). The bond length in 1-fluorosilatrane nicely fits the deduced equation.  相似文献   

18.
The introduction of the organosilicon substituent into the α‐position of an amino group results in cardinal change of the amine reactivity irrespective of the coordination state of silicon. Amines R2NCH2SiX3 [R = Me, Et, PhCH2, CH2SiX3; SiX3 = SiMe3, Si(OEt)3, Si(OCH2CH2)3N] easily react with AgNO3, to give the corresponding ammonium salts (R2NH+ CH2SiX3)·NO3?. At the same time, Ag(I) is reduced to Ag(0). The interaction of N‐methyl‐N,N‐bis(silatranylmethyl)amine with AgNO3 has been investigated by EPR spectroscopy. It was proven that the reaction involved a single electron transfer stage with the formation of cation radical of this amine. A mechanism of the reaction is proposed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
X-ray analysis has been conducted on four dioxaazasilacyclooctanes R2Si(OCH2CH2)2NR′ with R = C6H5, R′ = CH3 (IV); R = C6H5, R′ = (CH3)3C (V); R = CH3, R′ = C6H5 (VI) and R = R′ = C6H5 (VII). The interatomic distances SiN measured for these compounds had the values: 2.68 (IV), 3.16 (V), 3.19 (VI) and 3.08 Å (VII), indicating weak nitrogen—silicon interaction and a virtual lack of coordinate Si ← N bonding. The data of other authors and our own evidence suggest that the Si ← N interaction in these compounds is strongly influenced by the electronic effects of Si- and N-substituents and, in particular, by the steric effects of the latter.  相似文献   

20.
The catalytic activity of various organometallic compounds of the Lewis acid type RmMXn(M = Zn, Cd, B, Al; R = CH3,C2H5, i-C4H9, C6H5CH2, C6H5C2H4; X = Cl, OCH3) in the alternating copolymerization of acrylonitrile with butadiene in bulk and in toluene solution has been studied. The activity of the catalyst was found to depend on its acidity, the strength of its M? R bond, and on the type of substituent R. The results obtained have been discussed in terms of the copolymerizability of the acrylonitrile complexed by RmMXn and in terms of the effect of the RmMXn structure on the initiation rate of the copolymerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号