首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biosynthesis of metallic silver nanoparticles (AgNPs) has gained much interest and offers an attractive alternate to physical and chemical approaches. In recent year several safe, easy, cost-effective, reproducible, and environmentally friendly synthesis approaches for silver nanoparticles have been developed. In this research work, a simple, cheap, and unexplored method was applied on green synthesis of AgNPs using secondary metabolites extracted from Bixa orellana seeds. The seeds are rich of flavonoids and phenolic compounds which presumably responsible for the fast reduction and stabilization of silver ion into silver nanoparticles. The biosynthesis process is very likely to be able to reduce silver ions under simple physiological conditions. The surface plasmon resonance (SPR) that was appeared at 420 nm in UV–vis spectrum, had confirmed the formation of AgNPs. Moreover, the functional groups in secondary metabolite that act as reducing, capping and stabilizing agents for silver nanoparticles, are identified by Fourier transform infrared (FTIR) spectra. An X-ray diffraction analysis generated four peaks for Bixa orellana seed extract mediated AgNPs positioned at 2θ angles of 38.1°, 44.2°, 64.6°, and 77.5° corresponding to crystal planes (1 1 1), (2 0 0), (2 2 0), and (3 1 1). Field emission scanning electron microscope (FESEM) and transmission electron microscopy (TEM) images confirmed the formation of nanosized silver particles. The z-average of the synthesized particles measured by dynamic light scattering (DLS) was found to be 92.9 nm. AgNPs synthesized exhibited remarkable antioxidant activity, antibacterial and antiproliferative activity against human breast (MCF-7) cell line. On the basis of our results, we conclude that biologically synthesized AgNPs exhibited favorable characteristics and have the potential to be used in biomedical fields.  相似文献   

2.
The biosynthesis of metallic nanoparticles is on a sharp rise as they have growing applications in environmental and biomedical sciences. This study reports an eco-friendly and cost-effective methodology for synthesizing biogenic silver nanoparticles (AgNPs) using the extract of Medicago sativa (M. sativa) cultivated in South Khorasan. The parameters used in the synthesis process were optimized to obtain uniformly distributed AgNPs in suitable sizes. The morphological, structural, and bonding characteristics of M. sativa extract-based AgNPs (MSE-AgNPs) were explored using FTIR, FESEM, EDS, TEM, XRD, UV–Vis, and DLS techniques. UV–Vis spectroscopy confirmed the formation of MSE-AgNPs by observing the typical surface plasmon resonance (SPR) peak at 419 nm. XRD, FESEM, TEM, and DLS analyses confirmed the formation of face-centered cubic (fcc) crystalline structure, spherical/elliptical morphology, the average particle size of 15–35 nm, and highly stable MSE-AgNPs. Green synthesized MSE-AgNPs indicated a significant antioxidant activity (78%) compared to M. sativa extract (32%). As such, the synthesized MSE-AgNPs revealed a potential antioxidant activity towards the DPPH radicals. The biologically synthesized MSE-AgNPs exhibited highly potential antibacterial and antifungal activities against Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus epidermidis, Enterococcus faecalis, Staphylococcus aureus, and Candida albicans with the minimum inhibitory concentration (MIC) values of 62.5, 125, 125, 1000, 125, 1000, and 31.25 µg/mL, respectively. In vitro cytotoxicity of the MSE-AgNPs against human fibroblast (HF) cells indicated a dose–response activity (with IC50 value of 18 µg/mL). Moreover, the AgNPs revealed efficient photocatalytic degradation of thymol blue (TB) as an anionic dye and malachite green (MG) as a cationic dye under sunlight and UV irradiations. Up to 94.37% and 90.12% degradation rates were obtained for MG and TB within only 100 min of UV irradiation. These observations signify that synthesized MSE-AgNPs can have great potential for biological and environmental applications.  相似文献   

3.
Recently, the production of nanoparticles using biological resources has gained considerable attention due to their application for animal and human well-being. In this study, we used a green synthesis to fabricate gold and silver nanoparticles by reducing HAuCl4 and AgNO3 into AuNPs and AgNPs, respectively, using Dudleya brittonii (DB) extract. The physio-chemical properties of the synthesized nanoparticles were analyzed using a UV–vis spectrophotometer, FESEM, EDX, HR-TEM, AFM and FT-IR. Furthermore, the antimicrobial and cytotoxicity activities of DB-AuNPs and DB-AgNPs against livestock pathogenic bacteria and different cell lines, as well as anti-oxidant activity, were investigated. DB synthesized AuNPs and AgNPs were mostly spherical with a few triangular rods and sizes ranging of 5–25 nm and 10–40 nm, respectively. The in vitro antibacterial and antifungal studies demonstrated the DB-AuNPs and DB-AgNPs have good antibacterial activity against E. coli and other livestock pathogens, including Y. pseudotuberculosis and S. typhi. Cell studies revealed that the higher concentrations of both DB-AuNPs and DB-AgNPs (1 µg/ml to 1 mg/ml) showed potent cytotoxicity in chicken cells after 24 hrs, whereas the middle and lower concentrations of DB-AuNPs and DB-AgNPs did not show cytotoxicity in selected cell lines after 24 hrs. In addition, the DB synthesized AuNPs and AgNPs exhibited good free scavenging activity in a dose-dependent manner. Therefore, the biosynthesized nanoparticles can be utilized by the livestock industry to develop an effective source against livestock microbial infections.  相似文献   

4.
《Arabian Journal of Chemistry》2020,13(12):8898-8908
This study reports a facile synthesis of silver nanoparticles (C3-AgNPs) by chemical route, using C3; 2,2′-((1E,1′E)-(propane-1,3-diylbis(azanylylidene))bis(methanylylidene))diphenol (3) and silver nitrate. The formation of nanoparticles was monitored using UV–Vis spectroscopy by the appearance of typical surface plasmon absorption maxima. The synthesized C3-AgNPs were characterized using Fourier-Transform-infrared (FTIR) and atomic force microscopy (AFM) techniques. In addition, the effect of concentration, temperature, time, pH, and stability in salts solution on C3-AgNPs was determined. From AFM, C3-AgNPs were found polydispersed with average size of 29.93 nm. Furthermore, the study reports C3-AgNPs as sensitive protocol for the detection of toxic metal; Hg(II) in tap water. From ten salts tested, C3-AgNPs demonstrated a sensitive and selective spectrophotometric signal and aggregation induced decrease of surface plasmon resonance (SPR) band. The nanosensor probe displayed a sensitive response to Hg(II) in a wide range of concentrations and pH. In addition, the decrease in SPR band of C3-AgNPs due to Hg(II) was not affected by tap water samples. C3-AgNPs also exhibited a redox catalytic potential in dyes degradation. In biological application, C3-AgNPs exhibited significant anticancer and antibacterial potential of 65 to 94% at 24–72 h, and inhibition zone of 7–18 mm, respectively. Hence, the synthesized C3-AgNPs could have promising application in environmental and pharmacological remediation.  相似文献   

5.
The silver nanoparticles (AgNPs) synthesized using hot water olive leaf extracts (OLE) as reducing and stabilizing agent are reported and evaluated for antibacterial activity against drug resistant bacterial isolates. The effect of extract concentration, contact time, pH and temperature on the reaction rate and the shape of the Ag nanoparticles are investigated. The data revealed that the rate of formation of the nanosilver increased significantly in the basic medium with increasing temperature. The nature of AgNPs synthesized was analyzed by UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy and thermal gravimetric analysis (TGA). The silver nanoparticles were with an average size of 20–25 nm and mostly spherical. The antibacterial potential of synthesized AgNPs was compared with that of aqueous OLE by well diffusion method. The AgNPs at 0.03–0.07 mg/ml concentration significantly inhibited bacterial growth against multi drug resistant Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). This study revealed that the aqueous olive leaf extract has no effect at the concentrations used for preparation of the Ag nanoparticles. Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future.  相似文献   

6.
Flavonols (FLA) from Vaccinium macrocarpon (V. macrocarpon) were identified using high-performance liquid chromatography coupled with mass spectrometry detection. Nanoparticles were prepared using highly crosslinked keratin (KER) from human hair and silver and entrapped with flavonols [KER + FLA + AgNPs]. Nanocomposites were characterized using UV–Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction, zeta potential, and dynamic light scattering, and release profiles. The interactions between the capping agent and the silver core have been investigated using FTIR spectroscopy·H2O2 is a source of Reactive Oxygen Species (ROS) and acts as an activator of oxidative stress affecting NS-1 cells, and the protective effect of the nanocomposites were evaluated against H2O2-induced pancreatic β-cell damage. LC-MS/MS and HPLC analyses revealed the presence of 12 flavonols in V. macrocarpon plant extract. The cell apoptosis and proliferation, were evaluated by Hoechst 33342 staining, flow cytometry and Cell Counting Kit-8 respectively. Preincubation of the NS-1 cells with 250 µg/mL of H2O2 induced oxidative stress conditions that show pancreatic β-cell dysfunction, including ROS, cell death, mitochondrial function, antioxidant enzymes, and lipid peroxidation. Nevertheless, pretreatment with FLA and [KER + FLA + AgNPs] prevented mitochondria disruption, maintained cellular ATP levels, inhibited LDH release, intracellular ROS production, decreased lipid peroxidation, increased expression of antioxidant enzymes (CAT, SOD, and GPx) and GSH levels. These results indicate that nanocomposites could protect rat INS-1 pancreatic β-cell from H2O2-induced oxidative damage, apoptosis and proliferation by reducing the production of intracellular reactive oxygen species.  相似文献   

7.
Newcastle disease virus (NDV) causes serious infectious diseases in birds, affecting poultry production. In addition to adverse side effects, almost all conventional drugs targeting viral proteins have drug resistance mutations. This study aimed to evaluate the antiviral activity of green silver nanoparticles using green tea leaf extract as a new strategy to control NDV in ovo. The Log embryo infective dose50 (EID50) virucidal reduction was used to measure the antiviral activity of silver nanoparticles against NDV. The treatment of Vero cells with the silver nanoparticles (AgNPs) at a noncytotoxic concentration significantly therapeutic value by inhibiting NDV entry and reduced viral replication, which led to a great reduction in the viral titer in ovo. In conclusion, silver nanoparticles are effective as a therapeutic antiviral agent against NDV and inhibit microbial resistance by making it difficult for the microbe to adapt.  相似文献   

8.
Green fabrication has become a safe approach for producing nanoparticles. Plant-based biogenic synthesis of silver nanoparticles (AgNPs) has emerged as a possible alternative to traditional chemical production. In this paper, we provide a low-cost, green synthesis of AgNPs utilizing using Kei-apple (Dovyalis caffra) fruit extract. Ultraviolet–visible (UV–Vis) spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning-Electron Microscope (SEM), and Dynamic Light Scattering (DLS) analyses were used to characterize green produced AgNPs. The formation of AgNPs was shown to have a surface resonance peak of 415 nm in UV–visible spectra, and FTIR spectra verified the participation of biological molecules in Synthesis of AgNPs. The TEM revealed that the biosynthesized AgNPs were mostly spherical in form, with size range of 12–53 nm. XRD diffractogram was used to demonstrate the face cubic centre (fcc) character of AgNPs. Excellent anticancer activity of AgNPs was recorded where more than 80% of Prostate Cancer (PC-3) cell lines was inhibited by 100–150 µg/mL of AgNPs, while 38% only was recorded using AgNO3 and 55.62% was recorded D. caffra fruit extract at 150 µg/mL. Destructions of PC-3 cell was observed as a result of exposed to AgNPs, followed by D. caffra fruit extract, while minor alterations were recorded as exposed to AgNO3. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging using AgNPs was three fold using fruit extract at 100 µg/mL indicating good antioxidant activity. Excellent inhibitory activity of AgNPs was recorded against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus fumigatus with inhibition diameter zone 28.22 ± 0.25 mm, 23.21 ± 0.35 mm, 27.25 ± 0.03 mm, 28.40 ± 0.15 mm, 29.23 ± 0.44 mm, and 9.52 ± 0.5 mm, respectively compared with AgNO3. D. caffra fruits considered a promising and safe source for fabrication of AgNPs with multi-biological functions.  相似文献   

9.
《Solid State Sciences》2001,3(1-2):25-30
The first silver palladium oxide, Ag2PdO2, was synthesised from a co-precipitated oxide precursor by annealing at 423–823 K, applying an oxygen pressure of 73 MPa. The crystal structure has been determined from X-ray and neutron powder diffraction data. The new compound crystallises in space group Immm. The lattice constants as determined from X-ray powder diffraction are a=4.55523(5) Å, b=3.00803(3) Å and c=9.8977(1) Å. The crystal structure constitutes a new structure type showing some features in common with the Li2CuO2-type. Palladium is found in a nearly square planar arrangement while silver has an almost linear co-ordination. The overall structure can be considered as a rocksalt defect structure. Ag2PdO2 is diamagnetic and semiconducting. The band gap, estimated from conductivity measurements in the temperature range of 240–300 K, is 0.18(2) eV.  相似文献   

10.
The electroreduction of nitrate in synthetic seawater was investigated by cyclic voltammetry (CV) at a bare gold electrode modified by electrodeposited silver nanoparticles (AgNPs). The AgNPs were generated by chronoamperometry using a charge, Q, lower than the theoretical one corresponding to a silver monolayer. In these conditions, a linear range for nitrate determination is obtained from 10·10-6 mol L-1 to 10·10-3 mol L-1. Such a low limit of detection was achieved due to the combination of two chemical reactions coupled with electron transfer.  相似文献   

11.
A series of diazenyl schiff bases have been synthesized by reaction of salicylaldehyde containing azo dyes with various substituted aniline derivatives in the presence of acetic acid as catalyst. The structures of diazenyl derivatives were determined by FTIR, UV–vis, 1H NMR, 13C NMR, CHN analysis, fluorimetric and mass spectroscopic studies. The synthesized derivatives were screened for their in vitro antimicrobial activity against various Gram-positive (S. aureus, B. subtilis, B. cereus), Gram-negative (S. typhi, S. enterica, E. coli, P. aeruginosa) bacterial and fungal (C. albicans, A. niger and A. fumigatus) strains, using cefadroxil (antibacterial) and fluconazole (antifungal) as standard drugs. The diazenyl schiff bases were also screened for their cytotoxicity against human colorectal carcinoma cell line (HCT-116) using 5-fluorouracil as standard drug by Sulforhodamine-B Stain (SRB) assay. The schiff bases exhibited significant activity toward both Gram-positive, Gram-negative bacterial and fungal strains. Most of the synthesized derivatives showed high activity against S. enterica. 4-((2,5-Dichlorophenyl)diazenyl)-2-((3-bromophenylimino)methyl)phenol (SBN-40) was found to be very active against S. aureus, B. cereus and E. coli, with MIC = 0.69 (µM/ml × 102). The compound 4-((2-bromophenyl)diazenyl)-2-((4-nitrophenylimino)methyl)phenol (SBN-13) possessed comparable activity (IC50 = 7.5 µg/ml) to the standard drug 5-fluorouracil (IC50 = 3.0 µg/ml) against human colorectal carcinoma cell line (HCT-116).  相似文献   

12.
A new indium hydroxyphosphate containing silver, AgIn[PO3(OH)]2, has been synthesized using hydrothermal method. It crystallizes in the P21/c space group with the cell parameters a = 6.6400(2) Å, b = 14.6269(6) Å, c = 6.6616(4) Å, β = 95.681(5)°, V = 643.82(6) Å3, Z = 4. Its three-dimensional framework, built up of corner-sharing PO3(OH) tetrahedra and InO6 octahedra, presents intersecting tunnels running along <111> and [100] directions, in which the Ag+ cations are located. The presence of hydroxyl groups has been confirmed from IR spectroscopy studies and hydrogen atoms were located from the single crystal X-ray diffraction study. The structural relationships with the other compounds of general formula AIMIII[PO3(OH)]2 are analyzed.  相似文献   

13.
《Solid State Sciences》2007,9(2):137-143
Four new magnesium containing metal–organic hybrid compounds have been synthesized in an effort to prepare low-density materials for hydrogen storage. The compounds were prepared hydrothermally and characterized using single crystal X-ray diffraction. Three of these compounds are analogs of known transition metal structures with squarate (I, Pn-3n, a = 16.276(5) Å), diglycolate (II, P212121, a = 6.860(1) Å, b = 9.993(1) Å, c = 10.884(1) Å, R1 = 0.0341), and glutarate (III, R-3, a = 10.744(2) Å, c = 28.677(5) Å, R1 = 0.0554) ligands; the fourth is a novel structure using cyclobutanetetracarboxylate (IV, Pccn, a = 9.382(1) Å, b = 14.410(2) Å, c = 8.725(1) Å, R1 = 0.0465) which contains potassium as well as magnesium cations.  相似文献   

14.
The thermal behavior of AgNCO (silver isocyanate) has been studied via thermal analysis, optical spectroscopy, X-ray powder diffraction and transmission electron microscopy. Upon quenching the high temperature polymorph (HT-AgNCO) to room temperature, a new modification has been obtained (q-AgNCO). Its crystal structure was solved from X-ray powder diffraction data and refined by the Rietveld method (Pmmn (no. 59), a = 3.579(3) Å, b = 5.777(4) Å, c = 5.807(2) Å, V = 120.08(3) Å3, Z = 2, T = 295 K). The structure consists of chains of Ag+ ions bridged by isocyanate units. HT-AgNCO exists between T = 135 °C and the melting/decomposition point and exhibits virtually free rotation of the complex anions. According to preliminary single-crystal studies, HT-AgNCO (C2/m, a = 5.87 Å, b = 3.51 Å, c = 5.81 Å, ß = 105.953°, Z = 2, T = 373 K) is structurally related to α-NaN3. The crystal structures of both, HT-AgNCO and q-AgNCO have been compared with that of the room temperature modification (RT-AgNCO). The thermal behavior and the ionic conductivity of AgNCO are discussed with respect to the related compounds AgN3 and KSCN. Decomposition of AgNCO proceeds in distinct steps, as seen from TGA, and results in the formation of nanoparticles of elemental silver and an amorphous polymer consisting of C, N and O, only.  相似文献   

15.
《Polyhedron》2005,24(16-17):2102-2107
Four complexes of M(NO3)2(4NOPy-OMe)2, (4NOPy-OMe = 4-(N-tert-butyloxylamino)-2-(methoxymethylenyl)pyridine, and M = MnII, 1; CoII, 2; NiII, 3; CuII, 4), were prepared and fully characterized. X-ray single crystal analysis reveals that four complexes are isostructural. The molecular structures are distorted octahedral in which the methoxy oxygen atoms coordinate to the metal ion by trans-configuration while the pyridyl nitrogen atoms and the nitrate oxygen atoms coordinate by cis-configuration. The magnetic properties of all complexes were investigated by SQUID magneto/susceptometry. Temperature dependence of the molar magnetic susceptibilities in the temperature range of 2–300 K indicated that the magnetic coupling between aminoxyl radicals and metal ion was antiferromagnetic in the complex 1 and were ferromagnetic in the complexes 24. The quantitative analysis based on the spin Hamiltonian, H = −2J(S1SM + SMS2) yielded the best fit as J/kB = −13.4 ± 0.1 K, g = 1.94 ± 0.002, and θ = −0.78 ± 0.02 K for the complex 1, J/kB = 48.7 ± 2.1 K, g = 2.07 ± 0.02, and θ = −2.83 ± 0.41 K for the complex 3 (the data in the temperature range 300–50 K were used), and J/kB = 57.0 ± 1.2 K, g = 2.002 ± 0.004, and θ = −9.8 ± 0.1 K for the complex 4.  相似文献   

16.
《Polyhedron》2005,24(16-17):2269-2273
Two ion-pair compounds, consisting of 1-(4′-R-benzyl)pyridinium ([RBzPy]+, R = NO2 (1) and Br (2)) and [Ni(dmit)2] (dmit2− = 2-thioxo-1,3-dithion-4,5-dithiolato), have been synthesized and structurally characterized. The anions of [Ni(dmit)2] stack into dimers, which further construct into two-leg ladder through terminal S⋯S interactions in 1, lateral S⋯S interactions in 2. The weak H-bonding interactions of C–H⋯S were observed in 2, while only weak van de Waals interactions between anion and cations in 1. The magnetic susceptibilities measured in 2–300 K indicate AFM exchange interaction domination both two compounds. A peculiar magnetic transition at ∼100 K was observed in 1. An AFM ordering below ∼11 K was found in 2, and the best fit to magnetic susceptibility above 45 K in this compound, using a dimer model with s = 1/2, give rise to Δ/kB = 36.1 K, zJ = −0.91 K, C = 3.2 × 10−3 emu K mol−1 and χ0 = −4.0 × 10−6 emu mol−1 with g of 2.0 fixed.  相似文献   

17.
Subsolidus phase relations in Na2O–Fe2O3–Sb2Ox system (excluding Na-rich and Sb-rich corners) were studied using powder X-ray diffraction. Samples were prepared by conventional solid-state reactions at 980–1030 °C followed by quenching. Sb substitution for Fe stabilizes the low-temperature rhombohedral α form of NaFeO2 and enhances ionic conductivity: σ(300 °C) = 0.5 S/m, Ea = 0.38(3) eV, te < 0.01 for Na0.8Fe0.9Sb0.1O2 ceramics. Besides known orthorhombic Na2Fe3SbO8, three new compounds have been identified: trigonal Na4FeSbO6, a superlattice of α-NaFeO2 type, a = 5.4217(7) Å, c = 16.2715(1) Å, possible space group P3112; orthorhombic Na2FeSbO5, possibly related to brownmillerite, Pbcn, a = 10.8965(13) Å, b = 15.7178(13) Å, c = 5.3253(4) Å, and one more phase with empirical formula Na4Fe3SbO9, whose pattern could not be indexed. Ion-exchange reactions lead to a delafossite-type superlattice Ag3(NaFeSb)O6 (a = 5.4503(12) Å, c = 18.7747(20) Å, possible space group P3112).  相似文献   

18.
Precise excess volumes of mixing measurements at T = 313.15 K are reported over the whole composition range for binary mixtures: (N,N-dimethylacetamide + water), (N,N-dimethylacetamide + methanol), (N,N-dimethylacetamide + ethanol) and for the ternary mixtures (N,N-dimethylacetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water). For all the systems, large negative deviations from ideality are observed. The binary results have been fitted using the Redlich–Kister type polynomial. The possibility of predicting the ternary results from the binary ones was examined.  相似文献   

19.
《Solid State Sciences》2007,9(7):619-627
Three new crystal structures, isotypic with β-Zr2O(PO4)2, have been resolved by the Rietveld method. All crystallize with an orthorhombic cell (S.G.: Cmca) with a = 7.1393(2) Å, b = 9.2641(2) Å, c = 12.5262(4) Å, V = 828.46(4) Å3 and Z = 8 for Th(OH)PO4; a = 7.0100(2) Å, b = 9.1200(2) Å, c = 12.3665(3) Å, V = 790.60(4) Å3 and Z = 8 for U(OH)PO4; a = 7.1691(3) Å, b = 9.2388(4) Å, c = 12.8204(7) Å, V = 849.15(7) Å3 and Z = 4 for Th2O(PO4)2. By heating, the M(OH)PO4 (M = Th, U) compounds condense topotactically into M2O(PO4)2, with a change of the environment of the tetravalent cation that lowers from 8 to 7 oxygen atoms. The lower stability of Th2O(PO4)2 compared to that of U2O(PO4)2 seems to result from this unusual environment for tetravalent thorium.  相似文献   

20.
A new complex of oxovanadium(IV), V2O2[(HB(pz)3)2(pyrro)2 (1) and a dimer-dithio carboxyl compound (C5H8NS2)2 (2) have been synthesized by the reaction of VOSO4·nH2O with NaHB(pz)3 and pyrrolidine dithio carboxylic acid ammonium salt. They were characterized by element analysis, IR spectra, UV–vis spectra and X-ray diffraction. Structural analyses of 1 and 2 gave the following parameters: 1, triclinic, P-1, a = 7.732(4) Å, b = 14.285(8) Å, c = 17.802(9) Å, α = 101.314(8)°, β = 92.682(9)°, γ = 92.228(9)°, V = 1923.6(18) Å3, and Z = 4; 2, monoclinic, C2/c, a = 13.857(2) Å, b = 10.4213(18) Å, c = 9.436(2) Å, β = 97.099(2), V = 1352.1(4) Å3, and Z = 4. In complex 1, vanadium atom adopts a distorted tetragonal bipyramid structure, which is typical for oxovanadium(IV) complexes. Compound 2 is a dimer-dithio carboxyl compound with S–S bond. In addition, thermal analysis was performed for analyzing the stabilization of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号