首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
A magnetically recyclable eggshell-based catalyst (MKEC) was synthesized to circumvent saponification during the conversion of neem, Jatropha, and waste cooking oils (free fatty acid, 2.3–6.6%) to biodiesel. The characterization results indicated that MKEC had a mesoporous structure with the pore width of 3.24 nm, a specific surface area of 128 m2/g, and a pore volume of 0.045 cm3/g. The results confirmed that the MKEC is more tolerant to fatty acid poisoning than calcined eggshell. The effects of process parameters for maximum fatty acid methyl ester (FAME) content were evaluated by central composite design (CCD) and artificial neural network (ANN). The experimental FAME content of 94.5% was achieved for neem oil with a standard deviation (SD) of 0.68, which was in reasonable agreement with predicted values (CCD, 96.9%; ANN, 95.9%; SD, 0.73). The reusability studies showed that the mesoporous catalyst can be reused efficiently for five cycles without much deterioration in its activity.  相似文献   

2.
Mo-KIT-6 catalysts precursors obtained by direct hydrothermal synthesis using different Si/Mo molar ratios (10, 20, 30) were evaluated in the production of biodiesel from the transesterification of soybean oil with methanol. A 22 + 3PtCt factorial design was used to evaluate the influence of alcohol/oil and Si/Mo ratios on biodiesel yield. ANOVA statistical analysis showed that Si/Mo ratio was the most significant variable. The factorial design showed that the optimal conditions for maximizing the biodiesel yield are: using the 10_Mo-KIT-6 catalyst, and an alcohol/oil ratio of 20/1 at 150 °C for 3 h. However, using the 20_Mo-KIT-6 catalyst with an alcohol/oil ratio of 15/1 the biodiesel yield is close to the maximum, having the advantage of using a lower amount of methanol, which means that the separation of non-reacted alcohol will consume less energy.  相似文献   

3.
Biodiesel fuel is an alternative and renewable energy source, which may help to reduce air pollution, as well as our dependence on petroleum for energy. Several processes have already been developed for the production of biodiesel. Alkali-catalyzed transesterification with short-chain alcohols, for example, generates high yields of methyl esters in short reaction times. In this study, we have evaluated the efficacy of batch (one- and two-stage) transesterification of rapeseed oil in the production of rapeseed methyl ester. The conversion of rapeseed oil exhibited similar reaction patterns and yields in 30- and 1-L reaction systems. Approximately 98% of the rapeseed oil was converted at 400 rpm within 20 min, under the following conditions: 1% (w/w) KOH, 1∶10 methanol molar ratio, and at 60°C. In the 30-L, two-stage transesterification process, approx 98.5% of the rapeseed oil was converted at a 1∶4.5 molar ratio and 1% (w/w) KOH at 60°C for 30 min (first reaction condition), and at a 1∶1 molar ratio and 0.2% (w/w) KOH at 60°C for 30 min (second reaction condition).  相似文献   

4.
《Comptes Rendus Chimie》2015,18(5):525-529
The increasing demand for energy has encouraged the development of renewable resources and environmentally benign fuel such as biodiesel. In this study, ethyl fatty esters (EFEs), a major component of biodiesel fuel, were synthesized from soybean oil using sodium ethoxide as a catalyst. By-products were glycerol and difatty acyl urea (DFAU), which has biological characteristics, as antibiotics and antifungal medications. Both EFEs and DFAU have been characterized using Fourier transform infrared (FTIR) spectroscopy, and 1H nuclear magnetic resonance (NMR) technique. The optimum conditions were studied as a function of reaction time, reactant molar ratios, catalyst percentage and the effect of organic solvents. The conversion ratio of soybean oil into pure EFEs was 76% after 10 h of reaction. The highest conversion yield of EFEs is obtained when the urea/soybean oil ratio was from 6.2 mmol to 1 mmol, while the highest production of DFAU is obtained when the ethoxide (as a catalyst)/soybean oil ratio is from 6.4 mmol to 1 mmol in hexane as the reaction medium.  相似文献   

5.
In order to develop an efficient and sustainable plasticizer, the waste cooking oil and malic acid were used as the main raw materials in this study to synthesize a bio-based plasticizer (acetylated-fatty acid methyl ester-malic acid ester, AC-FAME-MAE) by environment-friendly methods, and the structure was characterized by FTIR and 1H NMR. The properties of the poly (vinyl chloride) (PVC) with AC-FAME-MAE were tested and compared with those of the PVC plasticized with DOP (di-2-ethylhexyl phthalate) and EFAME (epoxy fatty acid methyl ester), respectively. The results of tensile test, TGA and leaching test showed that the mechanical properties, thermal stability and overall solvent resistance of PVC films with AC-FAME-MAE were significantly better than those of PVC films plasticized by DOP or EFAME. From the results of DMA, the plasticized efficiency of AC-FAME-MAE was as good as DOP. The application of AC-FAME-MAE has higher safety in the food industry based on the results of food simulation fluids experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号