首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In current nanoscience bioengineered magnetic nanoparticles (NPs) have come into prominence with considerable impact. These advanced functional materials find outstanding applications in chemical science in catalysis, environmental issues, sensing etc, as well as in biology as drug delivery agent, chemical therapeutics and others. We have been prompted to architect and synthesize a novel Au NP adorned over chitosan-biguanidine polyplex modified core–shell type magnetic nanocomposite (Fe3O4/CS-biguanidine/Au NPs). The bioshells facilitate to protect the core ferrite NPs as well as provides stability to the synthesized Au NPs by capping. The material was characterized using different analytical techniques like Fourier Transformed Infra-Red spectroscopy (FT-IR), Inductively Coupled Plasma-Optical Emission Microscopy (ICP-OES), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and X-ray Diffraction (XRD) studies. We explored the biological application of the nanocomposite in determining cytotoxicity of three adenocarcinoma cell lines (PC-14, LC-2/ad, HLC-1) through the MTT assay. The material showed very good activity by exhibiting very low % cell viability over the cell lines dose-dependently. The IC50 of Fe3O4/CS-biguanidine/Au NPs were observed 503, 398 and 475 µg/mL respectively against the three cell lines. The best output was observed at a concentration of 1000 µg/mL of catalyst in terms of cytotoxicity and inhibition of lung cancer growth. The anti-cancer potential was found in close relation to their antioxidant potential.  相似文献   

2.
Most recently, gold nanoparticles due to anticancer properties have been considered in medical science. So the aim of the study was green synthesis of gold nanoparticles using Ocimum basilicum extract and its anticancer activity. The prepared Au nanoparticles were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD) and UV–vis spectroscopy study. It has been established that Au nanoparticles have a spherical shape with a mean diameter from 19 to 44 nm. In the cellular and molecular part of the recent study, the treated cells with Au nanoparticles were assessed by MTT assay for 48 h about the cytotoxicity and anti-human laryngeal cancer properties on normal (HUVEC) and cancer (HEp-2, TU212, KB, UM-SCC-5, UM-SCC-11A and UM-SCC-11B) cell lines. In the antioxidant test, the IC50 of Au nanoparticles and BHT against DPPH free radicals were 228 and 208 µg/mL, respectively. The IC50 of Au nanoparticles were 174, 231, 179, 143, 230, and 216 µg/mL against HEp-2, TU212, KB, UM-SCC-5, UM-SCC-11A and UM-SCC-11B cell lines, respectively. The viability of malignant cell lines reduced dose-dependently in the presence of Au nanoparticles. It appears that the anti-cancer effect of Au nanoparticles e to their antioxidant effects.  相似文献   

3.
In this study, we report the green synthesis of nontoxic, stable, and small size gold nanoparticle by using chitosan/sodium lignosulfonate hydrogel with capping/reducing ability for the synthesis of CS/NaLS/Au NPs. The prepared bio-nanocomposite were characterized by advanced physicochemical techniques like Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) study. It has been established that CS/NaLS/Au NPs have a spherical shape with a mean diameter from 20 to 30 nm. Diabetes was induced by administration of 60 mg/kg of streptozotocin (STZ) intraperitoneally in 100 mature male mice and they were randomly divided into 5 groups. The negative control group received normal saline and treatment groups received glibenclamide with dose 0.5 mg/kg and 10 and 40 μg/kg of CS/NaLS/Au NPs through gavage for 50 days. In addition, one group considered as positive control (in treated-diabetic). On the last day, serum levels of samples blood glucose, urea and creatinine were measured. After tissue processing, 5 μm sections of the kidneys were prepared and they were stained by periodic acid Schiff (PAS) and used for stereological analysis. In the antioxidant test, the IC50 of CS/NaLS/Au NPs and BHT against DPPH free radicals were 117 and 86 µg/mL, respectively. In the cellular and molecular part of the recent study, the treated cells with CS/NaLS/Au NPs were assessed by MTT assay for 48 h about the cytotoxicity properties on normal (HUVEC) cell line. The increased levels of blood glucose and urea were decreased (p < 0.05) significantly in CS/NaLS/Au NPs-treated groups as compared to the untreated diabetic. The kidney weight, kidney volume (Volume of cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, loop of Henle, interstitial tissues, and vessels) and kidney structures length (length of proximal and distal tubules, collecting ducts, loop of Henle, and vessels) decreased significantly (p < 0.05) after treatment with high dose of CS/NaLS/Au NPs (p < 0.05). According to the obtained results, CS/NaLS/Au NPs can regulates the levels of blood glucose and urea and inhibits from kidney damages in STZ-induced diabetic mice. This study suggested CS/NaLS/Au NPs as an antidiabetic and nephroprotective drug in the developing countries.  相似文献   

4.
Gold nanoparticles as one of the productions of the chemistry field have a special place in the cure of many diseases. Many experiences in medicinal researches have indicated that the plants enhance the anticancer effects of gold nanoparticles. According to the above contents, we investigated the capacities of Spinacia oleracea L. leaf aqueous extract green-mediated gold nanoparticles (AuNPs) as a modern chemotherapeutic material in treating endometrial cancer. The physicochemical characterization tests including UV–Visible Spectroscopy (UV–Vis), Field Emission Scanning Electron Microscopy (FE‐SEM), Fourier Transformed Infrared Spectroscopy (FT‐IR), and Transmission Electron Microscopy (TEM) were used for investigating the physicochemical properties of AuNPs. To survey the antioxidant potentials of AuNPs, one of the common antioxidant techniques i.e., DPPH was used. Determination of anti-endometrial cancer effects of AuNPs was carried out by the MTT assay and against Ishikawa, KLE, HEC-1-A, and HEC-1-B cell lines. The physicochemical characterization analyses revealed that the AuNPs had been formulated as the best possible. The results of the DPPH test confirmed excellent antioxidant properties of AuNPs in comparison to the butylated hydroxytoluene. The AuNPs IC50 was 194 µg/mL in the antioxidant test. The results of the MTT assay confirmed removing Ishikawa, KLE, HEC-1-A, and HEC-1-B cell lines after treating with low concentrations of AuNPs. The IC50 of the AuNPs was 341, 335, 316, and 325 µg/mL against Ishikawa, KLE, HEC-1-A, and HEC-1-B cell lines, respectively. The best finding of anti-endometrial cancer potentials was determined in the HEC-1-A cell line. According to the above results, significant anti-endometrial cancer effects of Au nanoparticles green-mediated by S. oleracea leaf extract are confirmed. It is offered that the studies of the clinical trial are performed for approving the above findings in humans.  相似文献   

5.
In this study, an eco-friendly and low-cost procedure for the in situ fabrication of Cu nanoparticles by using chitosan/alginate hydrogel. The prepared Cu NPs@CS/Alg nanocomposite were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) study. It has been established that chitosan/alginate-capped gold nanoparticles have a spherical shape with a mean diameter from 10 to 20 nm. In the cellular and molecular part of the recent study, the treated cells with Cu NPs@CS/Alg nanocomposite were assessed by MTT assay for 48 h about the cytotoxicity and anti-human breast cancer properties on normal (HUVEC) and breast cancer cell lines i.e. infiltrating lobular carcinoma of breast (UACC-3133), inflammatory carcinoma of the breast (UACC-732), and metastatic carcinoma (MDA-MB-453). In the antioxidant test, the IC50 of Cu NPs@CS/Alg nanocomposite and BHT against DPPH free radicals were 344 and 193 µg/mL, respectively. The IC50 of Cu NPs@CS/Alg nanocomposite were 297, 386, and 359 µg/mL against KYSE-270, OE33, and ESO26 cell lines, respectively. The viability of malignant breast cell line reduced dose-dependently in the presence of Cu NPs@CS/Alg nanocomposite.  相似文献   

6.
Regarding applicative, facile, green chemical research, a bio-inspired approach is being reported for the synthesis of Ag nanoparticles by pectin as a natural reducing and stabilizing agent without using any toxic and harmful reagent. The biosynthesized Pectin/Ag NPs were characterized by advanced physicochemical techniques like ultraviolet–visible (UV–Vis), Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive X-ray spectroscopy (EDX), and X-ray Diffraction (XRD) study. It has been established that pectin-stabilized silver nanoparticles have a spherical shape with a mean diameter from 15 to 20 nm. After that, the biological performance of those biomolecules functionalized Ag NPs was investigated. In the MTT assay, human colorectal carcinoma (HCT-8 [HRT-18], Ramos.2G6.4C10, HT-29, and HCT 116) and normal cell lines (HUVEC) were used to study the cytotoxicity and anticancer potential of human colorectal over the AgNO3 and Pectin/Ag NPs. The cell viability of Pectin/Ag NPs was very low against human colorectal carcinoma cell lines without any cytotoxicity on the normal (HUVEC) cell line. The best anti-human colorectal carcinoma properties of Pectin/Ag NPs against the above cell lines was in the case of the HCT 116 cell line. The antioxidant properties of the AgNO3 and Pectin/Ag NPs were calculated against DPPH free radicals. The IC50 of Pectin/Ag NPs was 167 µg/mL. According to the above results, the Pectin/Ag NPs may be administrated to treat human colorectal carcinoma in humans.  相似文献   

7.
In this work we have demonstrated the green synthesis of stable and mono-dispersed Ag NPs using chitosan/Agar hydrogel having reducing/stabilizing ability avoiding any toxic reagents. Agarose was used as a green reductant for the synthesis of Ag NPs which gets stabilized by chitosan. The in situ prepared Ag NPs@CS/Agar nano bio-composite were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) study. The Ag NPs encapsulated by CS/Agar bio-composite have a spherical shape with a mean diameter from 10 to 15 nm. Towards its bioapplication, the Ag NPs@CS/Agar nano bio-composite was administered by 5 µg/kg/day for 30 days in comparison to methyl prednisolone sodium succinate by 10 mg/kg, sc, thrice a week for 4 weeks over Wistar rats having glucocortcoid induced osteoporosis. This showed a significant increase in the serum levels of bone mineral content markers and a decrease in serum and urinary levels of bone resorption markers. An inclination in strength of femur and tibia was seen particularly with 5 µg/kg of Ag NPs@CS/Agar nano bio-composite. Maintenance of calcium homeostasis, formation of collagen and scavenging of free radicals can be the plausible mode of action of this bio-nanocomposite thereby combating osteoporosis induced by glucocorticoids.  相似文献   

8.
The current study involves the novel synthesis of Ag nanoparticles (Ag NPs) decorated biguanidine modified mesoporous silica KIT-5 following post-functionalization approach (KIT-5-bigua-Ag). The tiny Ag NPs were being stabilized over the in situ prepared biguanidine ligand. The high surface area material was characterized using advanced analytical methods like Fourier Transformed infrared (FT-IR) spectroscopy, N2-adsorption–desorption isotherm, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction study (XRD). The material was having large pore cage like structure with pore diameter of 8–10 nm. TEM study displayed the particles size of deposited Ag NPs were 10–15 nm. The KIT-5-bigua-Ag nanocomposite had a significantly high surface area of 318 m2/g (BET analysis). Towards the chemical applications of the material, we headed the three-component reaction of aldehydes, amines and alkynes (A3 coupling) with good to excellent yields (70–98%) of diverse Propargylamines. The catalyst was easily isolable and reused in 8 cycles without any leaching and considerable change in its reactivity. In addition, the KIT-5-bigua-Ag nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549 cell of human lung in-vitro conditions. In the cytotoxicity and anti-human lung studies, the nanocomposite was treated to lung cancer A549 cell line following MTT assay. The cell viability of malignant lung cell line reduced dose-dependently in the presence of KIT-5-biguanidine-Ag nanocomposite. IC50 values of the nanocomposite were observed to be 915.22 μg/mL against A549 cell line. So, these results suggest that KIT-5-bigua-Ag as a novel chemotherapeutic nanocomposite have a suitable anticancer activity against lung cell lines.  相似文献   

9.
In this study, V2O5 nanoparticles were synthesized in an aqueous medium using Calendula officinalis extract as stabilizing and reducing agents. The synthesized nanoparticles (VNPs@C.officinalis) were characterized using different techniques including UV–Vis. and FT-IR Spectroscopy, X‐ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDS). According to the XRD analysis, 28.83 nm was measured for VNPs@C.officinalis crystal size. SEM images exhibited a uniform spherical morphology in size of 38.14 nm for the biosynthesized nanoparticles. To survey the cytotoxicity and anti-human cervical cancer effects of C. officinalis aqueous extract and vanadium nanoparticles, MTT assay was used on C-33 A [c-33a], SiHa, Ca Ski, DoTc2 4510, HT-3, and LM-MEL-41 cell lines. The IC50 of the vanadium nanoparticles were237, 259, 226, 409, 335, and 192 µg/mL against C-33 A [c-33a], SiHa, Ca Ski, DoTc2 4510, HT-3, and LM-MEL-41 cell lines, respectively. To survey the antioxidant properties of Calendula officinalis aqueous extract and vanadium nanoparticles, the DPPH test was used. The vanadium nanoparticles inhibited half of the DPPH molecules in a concentration of 125 µg/mL. As mentioned, the vanadium nanoparticles had significant antioxidant and anti-human cervical cancer effects.  相似文献   

10.
11.
In this study we report the green synthesis of nontoxic and stable Cu nanoparticles (NP) using chitosan/starch hydrogel with reducing/capping ability without using any harsh reducing agents. Starch was used as a reducing agent for the synthesis of Cu NPs that was further stabilized by chitosan polymers. The in situ prepared Cu NPs/CS-Starch bio-composite were characterized by advanced physicochemical techniques like Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), UV–Vis, TGA and Inductively Coupled Plasma-Optical Emission Spectroscopic (ICP-OES) study. It has been established that Cu NPs/CS-Starch bio-composite have a spherical shape with a mean diameter from 5 to 7 nm. Cell viability of Cu NPs/CS-Starch bio-composite was very low against common human thyroid carcinoma cell lines i.e. TPC1, BCPAP and FTC133 without any cytotoxicity on normal cell line. The best anti-human thyroid carcinoma effects of Cu NPs/CS-Starch bio-composite was observed against the TPC1 cell line. For investigating the antioxidant properties of Cu NPs/CS-Starch bio-composite, the DPPH assay was used in the presence of butylated hydroxytoluene as the positive control. Cu NPs/CS-Starch bio-composite inhibited half of the DPPH molecules in the concentration of 207 µg/mL. The antioxidant activity of Cu NPs/CS-Starch bio-composite is significantly related to its anti-human thyroid carcinoma potentials. Based on to the above findings, the Cu NPs/CS-Starch bio-composite could be administrated for the treatment of several types of human thyroid carcinoma in humans.  相似文献   

12.

The current study was undertaken to investigate the antibacterial (against molecular characterized E. coli isolated from poultry faeces) potential of biosynthesized zinc oxide nanoparticles (ZnO-NPs) from Passiflora subpeltata Ortega aqueous leaf extract. The biosynthesized nanoparticles were subjected to physico-chemical characterization to study shape, size and purity by UV–Vis spectroscopy, X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The molecular identification of isolated E. coli from faeces samples was carried out by using 16–23s rRNA primers. The results of the physico-chemical characterization revealed that the biosynthesized nanoparticles were of 93.7% purity with an average size between 45 and 50 nm. The ZnO-NPs offered significant inhibition against the isolated Gram-negative E. coli with MIC at 62.5 µg mL?1 concentration. The antibacterial potential of ZnO NPs against E. coli has also been investigated by the cell viability test, and further the effects of ZnO NPs on bacterial morphological structures was analysed by SEM and TEM.

  相似文献   

13.
The present work demonstrates the synthesis of Ag nanoparticles (Ag NPs) by using aqueous extract of Citrus sinensis as green reductant and capping agent without any toxic reagent. Physicochemical characteristics of the said nanoparticles were elucidated by field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy (UV-Vids) techniques. The biogenic Ag NPs are uniformly globular. The Ag NPs has been explored biologically in the anticancer and antioxidant assays. In the cellular and molecular part of the recent study, the treated cells with Ag NPs were assessed by MTT assay for 48 h about the cytotoxicity and anti-human lung carcinoma properties on normal (HUVEC) and lung carcinoma cell lines i.e. NCI-H661, HLC-1, NCI-H1563, LC-2/ad, NCI-H1299, and PC-14. The viability of malignant lung cell line reduced dose-dependently in the presence of Ag NPs. The IC50 of Ag NPs were 82, 139, 170, 66, 62, and 50 µg/mL against NCI-H661, HLC-1, NCI-H1563, LC-2/ad, NCI-H1299, and PC-14 cell lines, respectively. In the antioxidant test, the IC50 of Ag NPs and vitamin E against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals were 21 and 15 µg/mL, respectively. After clinical study, Ag NPs containing Citrus sinensis leaf aqueous extract may be used to formulate a new chemotherapeutic drug or supplement to treat the several types of human lung adenocarcinoma.  相似文献   

14.
Regarding applicative, facile, green chemical research, a bio-inspired approach is being reported for the sonochemical synthesis of Ag nanoparticles by gelatin as a natural reducing/stabilizing and solid support agent without using any toxic and harmful reagent. The biosynthesized Ag NPs@gelatin bionanocomposite were characterized by advanced physicochemical techniques like ultraviolet–visible (UV–Vis), Fourier Transformed Infrared spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive X-ray spectroscopy (EDX), and X-ray Diffraction (XRD) study. It has been established that gelatin-stabilized silver nanoparticles have a spherical shape with a mean diameter from ~5–10 nm. To survey the antioxidant potentials of Ag NPs@gelatin, one of the common antioxidant techniques i.e., DPPH was used. The results of DPPH test proved excellent antioxidant properties of Ag NPs@gelatin in comparison to the positive control used i.e., butylated hydroxytoluene. The IC50 of Ag NPs@gelatin was 250 µg/mL in the antioxidant test. Determination of anti-liver cancer effects of Ag NPs@gelatin was carried out by the MTT assay and against pleomorphic hepatocellular carcinoma (SNU-387), morris hepatoma (McA-RH7777), and novikoff hepatoma (N1-S1 Fudr) cell lines. The results of MTT assay confirmed removing SNU-387, McA-RH7777, and N1-S1 Fudr cell lines after treating with low concentrations of Ag NPs@gelatin. The IC50 of the Ag NPs@gelatin was 192, 144, and 228 µg/mL against SNU-387, McA-RH7777, and N1-S1 Fudr cell lines, respectively. The best result of anti-human liver cancer effects of Ag NPs@gelatin against the above cell lines was seen in the case of the N1-S1 Fudr cell line. According to the above results, significant anti-liver cancer effects of Ag NPs@gelatin is confirmed.  相似文献   

15.
This experiment evaluated antioxidant, anti-human breast cancer activities, and cytotoxicity effects of green synthesis of Au nanoparticles (AuNPs) containing Foeniculum Vulgare aqueous extract. Mixing Foeniculum Vulgare aqueous with Au chloride solution produced Au nanoparticles. The characteristics of Au nanoparticles determined using Fourier Transformed Infrared Spectroscopy (FT‐IR), Transmission Electron Microscopy (TEM), UV–Visible Spectroscopy (UV–Vis), and Field Emission Scanning Electron Microscopy (FE‐SEM). To check the cytotoxicity and anti-breast cancer effects of Au chloride, Foeniculum Vulgare aqueous extract, and AuNPs on common breast cancer cell lines i.e., ZR-75-30, T47D, and HCC1187 was used MTT assay. AuNPs showed no cytotoxicity and the most effective anti-breast cancer features compared to other items that were tested. They had no cytotoxic effects on normal cell line (HUVEC) and had very low cell viability, high anti-breast cancer activities dose-dependently against ZR-75-30, T47D, and HCC1187 cell lines. In the presence of butylated hydroxytoluene as the positive control, the DPPH test was used to evaluate the antioxidant features of Au chloride, Foeniculum Vulgare aqueous extract, and Au nanoparticles. AuNPs showed the best antioxidant properties compared to other items that were tested. Perhaps remarkable anti-human breast cancer activities of Au nanoparticles synthesized by Foeniculum Vulgare aqueous extract due to its antioxidant properties. After clinical trial and confirmation of results, this formulation can be used as an effective drug to treat breast cancer.  相似文献   

16.
Herein, we represent the bio-synthesis of silver nanoparticles (Ag NPs) employing Oak gum as the green template, an efficient natural and non-toxic reductant and stabilizer based on its phytochemicals by using ultrasonic irradiation. The characterization of as-synthesized Ag NPs was performed through Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), elemental mapping, UV–Vis and X-ray diffraction (XRD). After the characterization, the synthesized Ag NPs/O. Gum was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using MeOH and BHT as reference molecules. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549, Calu6 and H358 human lung cell lines in-vitro through MTT assay. They had very low cell viability and high anti-human lung cancer activities dose-dependently against the cell lines without any cytotoxicity on the normal cell line (MRC-5). The IC50 of Ag NPs/O. Gum was found 161.25, 289.26 and 235.29 µg/mL against A549, Calu6 and H358 cell lines, respectively. Maybe significant anti-human lung cancer potentials of Ag NPs/O. Gum against common lung cancer cell lines are related to their antioxidant activities. So, these results suggest that synthesized Ag NPs/O. Gum as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.  相似文献   

17.
Bio synthesis of nanoparticles using plant parts has gained considerable attention, given the fact that the method is green, environment friendly, cheaper, simple and involves no hazardous substances. The present study involves the green synthesis of copper oxide nanoparticles (CuO NPs) using chitosan and the aqueous leaf extract of Elsholtzia blanda, an aromatic medicinal herb. The synthesized E.blanda-chitosan mediated copper oxide nanoparticles (CPCE) and E. blanda mediated copper oxide nanoparticles (PCE) were subjected to different characterization techniques, Ultraviolet–visible (UV–Vis), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX), High Resolution Transmission Electron Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). The absorbance peaks in UV–Vis spectroscopy at 286 nm and 278 nm for CPCE and PCE respectively indicated the formation of nanoparticles. TEM and SEM employed for studying the surface morphology showed rod-like and spherical morphology bearing average size of 47.71 nm for CPCE and 36.07 nm for PCE. The antibacterial activities of the prepared nanoparticles were tested against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli and Salmonella typhi by agar well diffusion method. The results indicate that CuO NPs possess effective antibacterial potential against all tested bacteria with a maximum zone of inhibition of 18 mm for Enterococcus faecalis. Antioxidant studies revealed the highest DPPH scavenging activity of 89% at 25 μg/mL concentration of the nanoparticles. The percentage of the photo catalytic degradation of Congo red was found to be 95% after 10 h.  相似文献   

18.
In recent days, the green synthesized nanomagnetic biocomposites have been evolved with tremendous potential as the future biological agents. This has encouraged us to design and synthesis of a novel Cu NPs supported Thyme flower extract modified magnetic nanomaterial (Fe3O4/Thyme-Cu). It was meticulously characterized using advanced analytical techniques like FT-IR, FESEM, TEM, EDX, VSM, XRD and ICP-OES. After the characterization, the synthesized Fe3O4/Thyme-Cu nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549, Calu6 and H358 human lung cell lines in-vitro through MTT assay. They had very low cell viability and high anti-human lung cancer activities dose-dependently against A549, Calu6 and H358 cell lines without any cytotoxicity on the normal cell line (MRC-5). The IC50 of Fe3O4/Thyme-Cu nanocomposite was 124, 265, and 181 µg/mL against A549, Calu6 and H358 cell lines, respectively. Maybe significant anti-human lung cancer potentials of Fe3O4/Thyme-Cu nanocomposite against common lung cancer cell lines are related to their antioxidant activities. So, these results suggest that synthesized Fe3O4/Thyme-Cu nanocomposite as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.  相似文献   

19.
A new flavonoid, saffloflavanside (1), a new sesquiterpene, safflomegastigside (2), and a new amide, saffloamide (3), together with twenty-two known compounds (4–25), were isolated from the flowers of Carthamus tinctorius L. Their structures were determined based on interpretation of their spectroscopic data and comparison with those reported in the literature. The protective effects against lipopolysaccharide (LPS)-stimulated damage on human normal lung epithelial (BEAS-2B) cells of the compounds were evaluated using MTT assay and cellular immunofluorescence assay. The results showed that compounds 2–3, 8–11, and 15–19 exhibited protective effects against LPS-induced damage to BEAS-2B cells. Moreover, compounds 2–3, 8–11, and 15–19 can significantly downregulate the level of nuclear translocation of NF-κB p-p65. In summary, this study revealed chemical constituents with lung protective activity from C. tinctorius, which may be developed as a drug for the treatment of lung injury.  相似文献   

20.
In recent years, scientists have tried to increase organic chemistry productions for the treatment of many cancers such as the lung cancers. In this regard, gold nanoparticles have a special place. Furthermore, one of the therapeutic properties of Verbascum chinense L. is increasing the physiological potentials of the body against several cancers. In the present study, gold nanoparticles were prepared and synthesized in aqueous medium using V. chinense leaf extract. We assessed the anti-human lung cancers potentials of these nanoparticles against well-differentiated bronchogenic adenocarcinoma, moderately differentiated adenocarcinoma of the lung, and poorly differentiated adenocarcinoma of the lung cell lines. AuNPs were characterized and analyzed by common nanotechnology techniques including FT-IR and UV–Vis. Spectroscopy, Field Emission-Scanning Electron Microscopy, and Transmission Electron Microscopy. In the FT-IR test, the presence of many antioxidant compounds with related bonds caused the excellent condition for reducing of gold in the gold nanoparticles. In UV–Vis, the clear peak in the wavelength of 542 nm indicated the formation of gold nanoparticles. We assessed the anti-human lung cancers potentials of these nanoparticles against well-differentiated bronchogenic adenocarcinoma, moderately differentiated adenocarcinoma of the lung, and poorly differentiated adenocarcinoma of the lung cell lines. AuNPs had excellent anti-human lung cancer effects dose-dependently against HLC-1, LC-2/ad, and PC-14 cell lines. The best result of anti-human lung cancer activities of AuNPs against above cell lines was observed in the case of the PC-14 cell line. In conclusion, the synthesized AuNPs showed significant anti-human lung cancer properties against well-differentiated bronchogenic adenocarcinoma, moderately differentiated adenocarcinoma of the lung, and poorly differentiated adenocarcinoma of the lung cell lines in a dose depended on manner. After confirming in the in vivo and clinical trials, AuNPs can be administrated in human for the treatment of humans’ lung cancers especially well-differentiated bronchogenic adenocarcinoma, moderately differentiated adenocarcinoma of the lung, and poorly differentiated adenocarcinoma of the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号