首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent days, the green synthesized nanomagnetic biocomposites have been evolved with tremendous potential as the future biological agents. This has encouraged us to design and synthesis of a novel Cu NPs supported Thyme flower extract modified magnetic nanomaterial (Fe3O4/Thyme-Cu). It was meticulously characterized using advanced analytical techniques like FT-IR, FESEM, TEM, EDX, VSM, XRD and ICP-OES. After the characterization, the synthesized Fe3O4/Thyme-Cu nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549, Calu6 and H358 human lung cell lines in-vitro through MTT assay. They had very low cell viability and high anti-human lung cancer activities dose-dependently against A549, Calu6 and H358 cell lines without any cytotoxicity on the normal cell line (MRC-5). The IC50 of Fe3O4/Thyme-Cu nanocomposite was 124, 265, and 181 µg/mL against A549, Calu6 and H358 cell lines, respectively. Maybe significant anti-human lung cancer potentials of Fe3O4/Thyme-Cu nanocomposite against common lung cancer cell lines are related to their antioxidant activities. So, these results suggest that synthesized Fe3O4/Thyme-Cu nanocomposite as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.  相似文献   

2.
In current nanoscience bioengineered magnetic nanoparticles (NPs) have come into prominence with considerable impact. These advanced functional materials find outstanding applications in chemical science in catalysis, environmental issues, sensing etc, as well as in biology as drug delivery agent, chemical therapeutics and others. We have been prompted to architect and synthesize a novel Au NP adorned over chitosan-biguanidine polyplex modified core–shell type magnetic nanocomposite (Fe3O4/CS-biguanidine/Au NPs). The bioshells facilitate to protect the core ferrite NPs as well as provides stability to the synthesized Au NPs by capping. The material was characterized using different analytical techniques like Fourier Transformed Infra-Red spectroscopy (FT-IR), Inductively Coupled Plasma-Optical Emission Microscopy (ICP-OES), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and X-ray Diffraction (XRD) studies. We explored the biological application of the nanocomposite in determining cytotoxicity of three adenocarcinoma cell lines (PC-14, LC-2/ad, HLC-1) through the MTT assay. The material showed very good activity by exhibiting very low % cell viability over the cell lines dose-dependently. The IC50 of Fe3O4/CS-biguanidine/Au NPs were observed 503, 398 and 475 µg/mL respectively against the three cell lines. The best output was observed at a concentration of 1000 µg/mL of catalyst in terms of cytotoxicity and inhibition of lung cancer growth. The anti-cancer potential was found in close relation to their antioxidant potential.  相似文献   

3.
This work describes an eco-friendly approach for in situ immobilization of Au nanoparticles on the surface of Fe3O4 nanoparticles, with the help of Thymbra spicata extract and ultrasound irradiations, without using any toxic reducing and capping agents. The combination of Fe3O4 NPs and Au NPs in one hybrid nanostructure (Fe3O4@Thymbra spicata/Au NPs) represents a promising strategy for targeted biomedical applications. The structure, morphology, and physicochemical properties were characterized by various analytical techniques such as fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), inductively coupled plasma (ICP) and vibrating sample magnetometer (VSM). MTT assay was used on common ovarian cancer cell lines i.e., SW-626, PA-1, and SK-OV-3 to survey the cytotoxicity and anti-ovarian cancer effects of Fe3O4@Thymbra spicata/Au NPs. The best results of cytotoxicity and anti-ovarian cancer properties were seen in the concentration of 1000 µg/mL. Fe3O4@ Thymbra spicata/Au NPs had very low cell viability and high anti-ovarian cancer activities dose-dependently against PA-1, SW-626, and SK-OV-3 cell lines without any cytotoxicity on the normal cell line (HUVEC). For investigating the antioxidant properties of Fe3O4@ Thymbra spicata/Au NPs, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. Fe3O4@Thymbra spicata/Au NPs inhibited half of the DPPH molecules in the concentration of 107 µg/mL. Maybe significant anti-human ovarian cancer potentials of Fe3O4@Thymbra spicata/Au NPs against common human ovarian cancer cell lines are linked to their antioxidant activities. After confirming the above results in the clinical trial researches, this formulation can be administrated for the treatment of several types of human ovarian cancers in humans.  相似文献   

4.
In this study, silver nanoparticles (Ag NPs) were decorated on the surface of magnetic nanoparticles in an eco-friendly pathway applying Mentha extract as reducing/stabilizing agent. The morphological and physicochemical features of the prepared Ag/Fe3O4nanocomposite were determined using several advanced techniques. Hence, our protocol is green and advantageous in terms of- i) biochemical modified biocompatible nanocomposite; ii) nanomaterial providing high surface area and larger number reactive sites; iii) very simplistic synthetic procedure; vi) very low load of metal in the composite and v) high yield in short time. In the medicinal part, the anticancer properties of Ag/Fe3O4 nanocomposite against lung cancer cell lines were determined. The free radical for the antioxidant effects was DPPH. The IC50 of Ag/Fe3O4 nanocomposite was 200 µg/ml in the antioxidant test. The IC50 of the Ag/Fe3O4 nanocomposite were 183, 176, 169, and 125 µg/mL against lung cancer (NCI-H661, NCI-H1975, NCI-H1573, and NCI-H1563) cell lines, respectively. In addition, the current study offer that Ag/Fe3O4 nanocomposite could be a new potential adjuvant chemopreventive and chemotherapeutic agent against cytotoxic cells.  相似文献   

5.
The present work demonstrates the synthesis of kaolin supported Ag nanoparticles (AgNPs@Kaolin) by using an aqueous extract of Thymbra spicata as a green reductant and capping agent. Physicochemical characteristics of the synthesized nanocomposite were studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, X-ray diffraction (XRD) and inductively coupled plasma (ICP) techniques. The biogenic AgNPs are uniformly globular. Owing to the surface modification by the plant derived phytochemicals, the NPs are found to be distributed evenly on the kaolin surface. The AgNPs@Kaolin nanocomposite has been explored biologically in the anticancer and antioxidant assays. In the cellular and molecular part of the recent study, the treated cells with AgNPs@Kaolin nanocomposite were assessed by MTT assay for 48 h about the cytotoxicity and anti-human lung adenocarcinoma properties on normal (HUVEC) and lung adenocarcinoma cell lines i.e. lung well-differentiated bronchogenic adenocarcinoma (HLC-1), lung moderately differentiated adenocarcinoma (LC-2/ad), and lung poorly differentiated adenocarcinoma (PC-14). The viability of malignant lung cell line reduced dose-dependently in the presence of AgNPs@Kaolin nanocomposite. The IC50 of AgNPs@Kaolin nanocomposite were 509, 315, and 189 µg/mL against HLC-1, LC-2/ad, and PC-14 cell lines, respectively. In the antioxidant test, the IC50 of AgNPs@Kaolin nanocomposite and BHT against DPPH free radicals were 125 and 161 µg/mL, respectively. After the clinical study, AgNPs@Kaolin nanocomposite containing T. spicata leaf aqueous extract may be used to formulate a new chemotherapeutic drug or supplement to treat the several types of human lung adenocarcinoma.  相似文献   

6.
Fe3O4 nanoparticles were coated with aminopropyltriethoxysilane and subsequently reacted with isatin to obtain imine‐bonded Fe3O4 nanoparticles. The addition of ZrOCl2?8H2O or CuCl2 led to the formation of complexes of Zr(IV)/isatin@Fe3O4 or Cu (II)/isatin@Fe3O4 as new magnetically separable catalysts. The synthesized catalysts were characterized using various techniques. These catalysts are shown to be efficient for chemo‐selective oxidation of sulfides to sulfoxides using hydrogen peroxide as oxidative agent. This system has many advantages, such as excellent level of reusability of magnetic catalysts, high yields, simplicity of separation of catalysts using an external magnet, environmental benignity and ease of handling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This work described the one-pot synthesis of apple pectin encapsulated Fe3O4 nanoparticles (Fe3O4/Pectin NPs) which is prepared by co-precipitation of Fe(II/(III) ions in alkaline solution mediated by pectin under ultrasound condition. This process led to formation of magnetic nanoparticles within the network of pectin. Physicochemical characterization of the as-synthesized Fe3O4/Pectin NPs was carried out through electron microscopy (SEM and TEM), energy dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The in vitro cytotoxic and anti-colorectal cancer effects of biologically synthesized Fe3O4/Pectin NPs against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines were assessed. The anti-colorectal cancer properties of the Fe3O4/Pectin NPs could significantly remove Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines in a time and concentration-dependent manner by MTT assay. The IC50 of the Fe3O4/Pectin NPs were 317, 337, 187, and 300 µg/mL against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines. The antioxidant activity of Fe3O4/Pectin NPs was determined by DPPH method. The Fe3O4/Pectin NPs showed the high antioxidant activity according to the IC50 value. It seems that the anti-human colorectal cancer effect of recent nanoparticles is due to their antioxidant effects.  相似文献   

8.
A novel method has been developed to successfully synthesize Fe3O4 nanoparticles with tunable size and morphology supported on shells of poly(o-Toluidine)(POT) hollow microspheres. The as-prepared POT/Fe3O4 nanoparticle composites can be used as novel and magnetic-responsive catalyst supports to produce highly efficient and recyclable noble metal catalysts. The size of Fe3O4 nanoparticles supported on shells of POT hollow microspheres can be tuned from 4 to 12 nm by changing the concentration of Fe ions. The roles of the doping acid of POT and Zeta potentials of Fe3O4 nanoparticles and POT in the formation of the POT/Fe3O4 nanoparticle composites were discussed. Furthermore, gold nanoparticles that were supported on the as-synthesized POT/Fe3O4 nanoparticle composites have been achieved by utilizing the reactivity of POT towards Au ions. The size of gold nanoparticles can be tuned by altering the concentration of HAuCl4. Finally, the catalytic activity of the obtained POT/Fe3O4/Au composites for 4-nitrophenol (4NP) reduction is investigated. The results demonstrate that such magnetic-responsive polymer-supported gold nanoparticles can be easily recovered and reused five times still remains high catalytic performance, which indicate their potential applications in the field of catalysis.  相似文献   

9.
Copper supported on 2-(1H-benzo[d]imidazol-2-yl)aniline (BIA)-functionalized Fe3O4 nanoparticles (Cu-BIA-Si-Fe3O4) as a novel magnetic catalyst was designed and used for the synthesis of new products via Ullmann and Suzuki cross-coupling reactions. The Ullmann reaction was performed by mixing arylboronic acid with aniline derivatives in dimethylsulfoxide solvent. Also, diaryls were synthesized via Suzuki C–C reactions between aryl halides and phenylboronic acid in the same solvent. The prepared materials and catalyst were characterized with various analytical techniques. The Cu-BIA-Si-Fe3O4 catalyst demonstrated catalytic efficiency with good to excellent yields for both types of reactions in comparison with commercial palladium catalysts. Also, the catalyst could be recovered by a simple filtration and retained its activity even after several cycles.  相似文献   

10.
11.
α-Glucosidase was stereoscopically immobilized on the surface of Fe3O4 magnetic nanoparticles, which was modified with APTES, using GA as a cross-linker. This established method had a broad application prospect for screening of enzyme inhibitors.  相似文献   

12.
以沉淀法制备了正癸酸修饰磁性纳米Fe3O4,采用XRD、TEM和FT-IR对修饰前后的磁性纳米粒子的形态、结构进行了表征。将修饰后的磁性纳米粒子用于对溶菌酶蛋白进行吸附分离,研究了溶液的pH、温度、时间、溶菌酶初始浓度、离子强度等因素对吸附过程的影响。结果表明:pH=10.7,吸附温度为25℃,吸附时间为2.0 h,溶菌酶初始浓度为0.30 mg·mL-1,最大吸附容量为35.0 mg·g-1。修饰后的磁性纳米粒子用于从鸡蛋清中提取溶菌酶,纯化倍数为30.9,酶活力收得率为73.0%。  相似文献   

13.
Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed.  相似文献   

14.
In this study, V2O5 nanoparticles were synthesized in an aqueous medium using Calendula officinalis extract as stabilizing and reducing agents. The synthesized nanoparticles (VNPs@C.officinalis) were characterized using different techniques including UV–Vis. and FT-IR Spectroscopy, X‐ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDS). According to the XRD analysis, 28.83 nm was measured for VNPs@C.officinalis crystal size. SEM images exhibited a uniform spherical morphology in size of 38.14 nm for the biosynthesized nanoparticles. To survey the cytotoxicity and anti-human cervical cancer effects of C. officinalis aqueous extract and vanadium nanoparticles, MTT assay was used on C-33 A [c-33a], SiHa, Ca Ski, DoTc2 4510, HT-3, and LM-MEL-41 cell lines. The IC50 of the vanadium nanoparticles were237, 259, 226, 409, 335, and 192 µg/mL against C-33 A [c-33a], SiHa, Ca Ski, DoTc2 4510, HT-3, and LM-MEL-41 cell lines, respectively. To survey the antioxidant properties of Calendula officinalis aqueous extract and vanadium nanoparticles, the DPPH test was used. The vanadium nanoparticles inhibited half of the DPPH molecules in a concentration of 125 µg/mL. As mentioned, the vanadium nanoparticles had significant antioxidant and anti-human cervical cancer effects.  相似文献   

15.
In this work, we synthesized Ni2+-containing 1-methyl-3-(3-trimethoxysilylpropyl) imidazolium chloride ionic liquid on magnetic Fe3O4 nanoparticles. The catalytic activity of these novel nanocomposites was finally evaluated for the Heck reaction at 100 °C, and can be reused after washing without loss in activity. The immobilized ionic liquid catalysts proved to be effective and easily separated from the reaction media by applying an external magnetic field. This procedure has many obvious advantages compared to those reported in the previous literature, including avoidance of the use of the expensive Pd catalysts, mild reaction conditions, high yields, and simplicity of the methodology.  相似文献   

16.
A nanostructured multicatalyst system consisting of Fe(3)O(4) magnetic nanoparticles (MNPs) as peroxidase mimetics and an oxidative enzyme entrapped in large-pore-sized mesoporous silica has been developed for convenient colorimetric detection of biologically important target molecules. The construction of the nanocomposites begins with the incorporation of MNPs on the walls of mesocellular silica pores by impregnating Fe(NO(3))(3)·9H(2)O, followed by the immobilization of oxidative enzymes. Glutaraldehyde crosslinking was employed to prevent enzymes leaching from the pores and led to over 20 wt% loading of the enzyme. The oxidase in the nanocomposite generates H(2)O(2) through its catalytic action for target molecules and subsequently activates MNPs to convert selected substrates into colored products. Using this strategy, two different biosensing systems were constructed employing glucose oxidase and cholesterol oxidase and their analytical capabilities were successfully verified by colorimetrically detecting the corresponding target molecules with excellent selectivity, sensitivity, reusability, and stability. Future potential applications of this technology range from biosensors to multicatalyst reactors.  相似文献   

17.
This work demonstrates the application of silica supported Fe3O4 nanoparticles as sorbent phase for magnetic solid-phase extraction (MSPE) and magnetic on-line in-tube solid-phase microextraction (Magnetic-IT-SPME) combined with capillary liquid chromatography–diode array detection (CapLC-DAD) to determine organophosphorous compounds (OPs) at trace level. In MSPE, magnetism is used as separation tool while in Magnetic-IT-SPME, the application of an external magnetic field gave rise to a significant improvement of the adsorption of OPs on the sorbent phase. Extraction efficiency, analysis time, reproducibility and sensitivity have been compared. This work showed that Magnetic-IT-SPME can be extended to OPs with successful results in terms of simplicity, speed, extraction efficiency and limit of detection. Finally, wastewater samples were analysed to determine OPs at nanograms per litre.  相似文献   

18.
Magnetic nanoparticles (MNPs) are of great interest owing to their numerous existing and potential biomedical applications. To further explore the potential of MNPs in biomedical and other fields, we have designed and synthesized polyvinyl alcohol (PVA) polymer grafted Fe3O4 MNPs through glutaraldehyde (GLA) link. The success of this process has been ascertained using Fourier transform infrared (FT‐IR) analysis, thermogravimetric analysis (TGA), X‐ray diffraction (XRD) analysis and scanning electron microscopy (SEM) analysis. The FT‐IR analysis of resultant MNPs show infrared peak characteristics of PVA. TGA analysis clearly shows two major stages of thermal degradation, one corresponding to organic phase of PVA and GLA and another corresponding to Fe3O4 nanoparticles. XRD results and SEM images further support the FT‐IR and TGA results and confirm the presence of PVA layer surrounding Fe3O4 MNP surface. Under SEM examination, the magnetic cores exhibit somewhat irregular shapes varying from spherical, to oval to cubic. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
An efficient procedure for the synthesis of new chromenes by the multicomponent reaction of aldehydes, 4‐hydroxycoumarin and 2‐hydroxynaphthalene‐1,4‐dione in the presence of an ionic liquid supported on Fe3O4 nanoparticles is described. The ionic liquid supported on Fe3O4 nanoparticles as a magnetic catalyst gives products in high yields. Significant features of this method are: short reaction times, excellent yields, green method and use of an effective catalyst that can be recovered and reused many times without loss of its catalytic activity.  相似文献   

20.
The present work demonstrates the synthesis of Ag nanoparticles (Ag NPs) by using aqueous extract of Citrus sinensis as green reductant and capping agent without any toxic reagent. Physicochemical characteristics of the said nanoparticles were elucidated by field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible spectroscopy (UV-Vids) techniques. The biogenic Ag NPs are uniformly globular. The Ag NPs has been explored biologically in the anticancer and antioxidant assays. In the cellular and molecular part of the recent study, the treated cells with Ag NPs were assessed by MTT assay for 48 h about the cytotoxicity and anti-human lung carcinoma properties on normal (HUVEC) and lung carcinoma cell lines i.e. NCI-H661, HLC-1, NCI-H1563, LC-2/ad, NCI-H1299, and PC-14. The viability of malignant lung cell line reduced dose-dependently in the presence of Ag NPs. The IC50 of Ag NPs were 82, 139, 170, 66, 62, and 50 µg/mL against NCI-H661, HLC-1, NCI-H1563, LC-2/ad, NCI-H1299, and PC-14 cell lines, respectively. In the antioxidant test, the IC50 of Ag NPs and vitamin E against 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals were 21 and 15 µg/mL, respectively. After clinical study, Ag NPs containing Citrus sinensis leaf aqueous extract may be used to formulate a new chemotherapeutic drug or supplement to treat the several types of human lung adenocarcinoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号