首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a green protocol for supporting CuO nanoparticles over chitosan-modified amino-magnetic nanoparticles is described. The physicochemical and morphological properties of the desired nanocomposite assessed by various techniques like ICP, FT-IR, FE-SEM, EDX, TEM, XRD and VSM. In the oncological part of the recent study, the Cu(NO3)2, Fe3O4, and Fe3O4-NH2@CS/CuO nanocomposite cell viability was very low against human gastric cancer cell lines i.e. MKN45, AGS, and KATO III and human colorectal carcinoma cell lines i.e. HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10. The IC50 of Fe3O4-NH2@CS/CuO nanocomposite against MKN45, AGS, KATO III, HT-29, HCT 116, HCT-8 [HRT-18], and Ramos.2G6.4C10 cell lines were 517, 525, 544, 282, 214, 420, and 477 µg/mL, respectively. Thereby, the best anti-gastro-duodenal cancers findings of our Fe3O4-NH2@CS/CuO nanocomposite was seen in the HCT 116 cell line case.  相似文献   

2.
In recent days, the green synthesized nanomagnetic biocomposites have been evolved with tremendous potential as the future biological agents. This has encouraged us to design and synthesis of a novel Cu NPs supported Thyme flower extract modified magnetic nanomaterial (Fe3O4/Thyme-Cu). It was meticulously characterized using advanced analytical techniques like FT-IR, FESEM, TEM, EDX, VSM, XRD and ICP-OES. After the characterization, the synthesized Fe3O4/Thyme-Cu nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549, Calu6 and H358 human lung cell lines in-vitro through MTT assay. They had very low cell viability and high anti-human lung cancer activities dose-dependently against A549, Calu6 and H358 cell lines without any cytotoxicity on the normal cell line (MRC-5). The IC50 of Fe3O4/Thyme-Cu nanocomposite was 124, 265, and 181 µg/mL against A549, Calu6 and H358 cell lines, respectively. Maybe significant anti-human lung cancer potentials of Fe3O4/Thyme-Cu nanocomposite against common lung cancer cell lines are related to their antioxidant activities. So, these results suggest that synthesized Fe3O4/Thyme-Cu nanocomposite as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.  相似文献   

3.
This article displays synthesis of Silver nanoparticles (Ag NPs) decorated on sodium alginate covered magnetite (Fe3O4/Alg-Ag NPs) nanocomposite. Sodium alginate shell as a natural anionic polysaccharide on Fe3O4 microparticles core acted as a stabilizing agent for the reduction of Ag(I) ions into Ag NPs. The structural features of the synthesized nanocomposite were investigated by fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopes (FE-SEM), transmission electron microscopes (TEM), energy-dispersive X-ray spectroscopy (EDX) and vibrating-sample magnetometer (VSM) studies and inductively coupled plasma-optical emission spectroscopy (ICP-OES). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used on common lung cancer cell lines i.e., NCI-H1975, NCI-H1563, and NCI-H1299 to survey the cytotoxicity and anti-lung cancer effects of the synthesized nanocomposite. The synthesized nanocomposite had very low cell viability and high anti-lung cancer activities dose-dependently against NCI-H1975, NCI-H1563, and NCI-H1299 cell lines without any cytotoxicity on the normal cell line (Human umbilical vein endothelial cells (HUVECs)). To determine the antioxidant properties of the synthesized nanocomposite, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test was used in the presence of butylated hydroxytoluene as the positive control. The synthesized nanocomposite inhibited half of the DPPH molecules in the concentration of 194 µg/mL. Maybe significant anti-human lung cancer potentials of the synthesized nanocomposite against common human lung cancer cell lines are linked to their antioxidant activities.  相似文献   

4.
This work described the one-pot synthesis of apple pectin encapsulated Fe3O4 nanoparticles (Fe3O4/Pectin NPs) which is prepared by co-precipitation of Fe(II/(III) ions in alkaline solution mediated by pectin under ultrasound condition. This process led to formation of magnetic nanoparticles within the network of pectin. Physicochemical characterization of the as-synthesized Fe3O4/Pectin NPs was carried out through electron microscopy (SEM and TEM), energy dispersive X-ray spectroscopy (EDX), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The in vitro cytotoxic and anti-colorectal cancer effects of biologically synthesized Fe3O4/Pectin NPs against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines were assessed. The anti-colorectal cancer properties of the Fe3O4/Pectin NPs could significantly remove Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines in a time and concentration-dependent manner by MTT assay. The IC50 of the Fe3O4/Pectin NPs were 317, 337, 187, and 300 µg/mL against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cancer cell lines. The antioxidant activity of Fe3O4/Pectin NPs was determined by DPPH method. The Fe3O4/Pectin NPs showed the high antioxidant activity according to the IC50 value. It seems that the anti-human colorectal cancer effect of recent nanoparticles is due to their antioxidant effects.  相似文献   

5.
In this study, silver nanoparticles (Ag NPs) were decorated on the surface of magnetic nanoparticles in an eco-friendly pathway applying Mentha extract as reducing/stabilizing agent. The morphological and physicochemical features of the prepared Ag/Fe3O4nanocomposite were determined using several advanced techniques. Hence, our protocol is green and advantageous in terms of- i) biochemical modified biocompatible nanocomposite; ii) nanomaterial providing high surface area and larger number reactive sites; iii) very simplistic synthetic procedure; vi) very low load of metal in the composite and v) high yield in short time. In the medicinal part, the anticancer properties of Ag/Fe3O4 nanocomposite against lung cancer cell lines were determined. The free radical for the antioxidant effects was DPPH. The IC50 of Ag/Fe3O4 nanocomposite was 200 µg/ml in the antioxidant test. The IC50 of the Ag/Fe3O4 nanocomposite were 183, 176, 169, and 125 µg/mL against lung cancer (NCI-H661, NCI-H1975, NCI-H1573, and NCI-H1563) cell lines, respectively. In addition, the current study offer that Ag/Fe3O4 nanocomposite could be a new potential adjuvant chemopreventive and chemotherapeutic agent against cytotoxic cells.  相似文献   

6.
Chitosan is a linear polysaccharide and non-toxic bioactive polymer with a wide variety of applications due to its functional properties such as ease of modification, and biodegradability. In this study, a green protocol for supporting of Cu(II) on chitosan-encapsulated magnetic Fe3O4 nanoparticles is described. The morphological and physicochemical features of the material were determined using several advanced techniques like fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), inductively coupled plasma (ICP), vibrating sample magnetometer (VSM) and X-ray photoelectron spectroscopy (XPS). The average diameter of the NPs was approximately 15–25 nm. In addition, the Fe3O/CS/Cu(II) nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of lung well-differentiated bronchogenic adenocarcinoma, lung moderately differentiated adenocarcinoma, and lung poorly differentiated adenocarcinoma of human lung in-vitro conditions. In the cytotoxicity and anti-human lung studies, the nanocomposite was treated to lung cancer lung well-differentiated bronchogenic adenocarcinoma (HLC-1), lung moderately differentiated adenocarcinoma (LC-2/ad), and lung poorly differentiated adenocarcinoma (PC-14) cell line following MTT assay. The cell viability of malignant lung cell line reduced dose-dependently in the presence of Fe3O/CS/Cu(II) nanocomposite. The recent results suggest that Fe3O/CS/Cu(II) nanocomposite have a suitable anticancer activity against lung cell lines.  相似文献   

7.
This work describes an eco-friendly approach for in situ immobilization of Au nanoparticles on the surface of Fe3O4 nanoparticles, with the help of Thymbra spicata extract and ultrasound irradiations, without using any toxic reducing and capping agents. The combination of Fe3O4 NPs and Au NPs in one hybrid nanostructure (Fe3O4@Thymbra spicata/Au NPs) represents a promising strategy for targeted biomedical applications. The structure, morphology, and physicochemical properties were characterized by various analytical techniques such as fourier transformed infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), inductively coupled plasma (ICP) and vibrating sample magnetometer (VSM). MTT assay was used on common ovarian cancer cell lines i.e., SW-626, PA-1, and SK-OV-3 to survey the cytotoxicity and anti-ovarian cancer effects of Fe3O4@Thymbra spicata/Au NPs. The best results of cytotoxicity and anti-ovarian cancer properties were seen in the concentration of 1000 µg/mL. Fe3O4@ Thymbra spicata/Au NPs had very low cell viability and high anti-ovarian cancer activities dose-dependently against PA-1, SW-626, and SK-OV-3 cell lines without any cytotoxicity on the normal cell line (HUVEC). For investigating the antioxidant properties of Fe3O4@ Thymbra spicata/Au NPs, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. Fe3O4@Thymbra spicata/Au NPs inhibited half of the DPPH molecules in the concentration of 107 µg/mL. Maybe significant anti-human ovarian cancer potentials of Fe3O4@Thymbra spicata/Au NPs against common human ovarian cancer cell lines are linked to their antioxidant activities. After confirming the above results in the clinical trial researches, this formulation can be administrated for the treatment of several types of human ovarian cancers in humans.  相似文献   

8.
In current nanoscience bioengineered magnetic nanoparticles (NPs) have come into prominence with considerable impact. These advanced functional materials find outstanding applications in chemical science in catalysis, environmental issues, sensing etc, as well as in biology as drug delivery agent, chemical therapeutics and others. We have been prompted to architect and synthesize a novel Au NP adorned over chitosan-biguanidine polyplex modified core–shell type magnetic nanocomposite (Fe3O4/CS-biguanidine/Au NPs). The bioshells facilitate to protect the core ferrite NPs as well as provides stability to the synthesized Au NPs by capping. The material was characterized using different analytical techniques like Fourier Transformed Infra-Red spectroscopy (FT-IR), Inductively Coupled Plasma-Optical Emission Microscopy (ICP-OES), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and X-ray Diffraction (XRD) studies. We explored the biological application of the nanocomposite in determining cytotoxicity of three adenocarcinoma cell lines (PC-14, LC-2/ad, HLC-1) through the MTT assay. The material showed very good activity by exhibiting very low % cell viability over the cell lines dose-dependently. The IC50 of Fe3O4/CS-biguanidine/Au NPs were observed 503, 398 and 475 µg/mL respectively against the three cell lines. The best output was observed at a concentration of 1000 µg/mL of catalyst in terms of cytotoxicity and inhibition of lung cancer growth. The anti-cancer potential was found in close relation to their antioxidant potential.  相似文献   

9.
In this study, gold nanoparticles (AuNPs) were green synthesized using plant extract. The obtained nanoparticles (Au NPs) were characterized by advanced physical and chemical techniques like TEM, FTIR, UV–vis, SEM, XRD and EDX. SEM image displayed the quasi-spherical shaped nanoparticles of mean diameter 20–50 nm. All the particles were of uniform shape and texture. From the XRD pattern, four distinct diffraction peaks at 38.2°, 44.2°, 64.7° and 77.4° are indexed as (1 1 1), (2 0 0), (2 2 0) and (3 1 1) planes of fcc metallic gold. The in vitro cytotoxic and anti-gastric carcinoma effects of biologically synthesized Au NPs against cancer cell lines were assessed. The IC50 of the Au NPs were 192, 149, 76 and 85 µg/mL against NCI-N87, MKN45, GC1401 and GC1436 gastric cancer cell lines. The anti-gastric carcinoma properties of the Au NPs could significantly remove the cancer cell lines in a time and concentration-dependent manner. So, the findings of the recent research show that biologically synthesized Au NPs might be used to cure cancer.  相似文献   

10.
In this study, an eco-friendly and low-cost procedure for the synthesis of Rubia Tinctorum plant extract modified magnetic nanocomposite (RT/Fe3O4) has been demonstrated. Au nanoparticles (Au NPs) were further decorated in situ over the designed RT/Fe3O4 nanocomposite exploiting the plant derived phytochemicals as bio-reductant and stabilizer. The resulting Au NPs@RT/Fe3O4 nanocomposite was characterized by various analytical methods like Field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), energy dispersive X-ray analysis (EDX) elemental mapping, transmission electron microscopy (TEM), vibrating-sample magnetometer (VSM), X-ray diffraction analysis (XRD), and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. The Au NPs@RT/Fe3O4 nanocomposite has been explored biologically in the anticancer and antioxidant assays. In the antioxidant test, the IC50 of Au NPs@RT/Fe3O4 nanocomposite and butylated hydroxytoluene (BHT) against 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals were 155 and 129 µg/ml, respectively. In the cellular and molecular part of the recent study, the treated cells with Au NPs@RT/Fe3O4 nanocomposite were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay for 48 h about the cytotoxicity and anti-human colon carcinoma properties on normal (HUVECs), colorectal adenocarcinoma (HT-29), colorectal carcinoma (HCT 116), ileocecal colorectal adenocarcinoma (HCT-8 [HRT-18]), and Burkitt's lymphoma (Ramos.2G6.4C10) cell lines. The viability of malignant colon cell line reduced dose-dependently in the presence of Au NPs@RT/Fe3O4 nanocomposite. The IC50 of Au NPs@RT/Fe3O4 nanocomposite were 250, 256, 212, and 197 µg/ml against Ramos.2G6.4C10, HCT-8 [HRT-18], HCT 116, and HT-29 cell lines, respectively.  相似文献   

11.
Over bimetallic Au/Cu catalyst supported on magnetic Fe3O4 nanoparticles, water-mediated bromamine acid could be selectively converted into 4,4'-diamino-1,1'-dianthraquinonyl-3,3'-disulfonic acid (DAS) with a yield of 88.67%. The magnetic catalyst could be readily separated and reused.  相似文献   

12.
A facile method of fabricating novel heat-generating membranes composed of electrospun polyurethane (PU) nanofibers decorated with superparamagnetic iron oxide nanoparticles (NPs) is reported. Electrospinning was used to produce polymeric nanofibrous matrix, whereas polyol immersion technique allowed in situ assembly of well-dispersed Fe3O4 NPs on the nanofibrous membranes without any surfactant, and without sensitizing and stabilizing reagent. The assembly phenomena can be explained by the hydrogen-bonding interactions between the amide groups in the PU matrix and the hydroxyl groups capped on the surface of the Fe3O4 NPs. The prepared nanocomposite fibers showed acceptable magnetization value of 33.12 emu/g, after measuring the magnetic hysteresis loops using SQUID. Moreover, the inductive heating property of electrospun magnetic nanofibrous membranes under an alternating current (AC) magnetic field was investigated. We observed a progressive increase in the heating rate with the increase in the amount of magnetic Fe3O4 NPs in/on the membranes. The present electrospun magnetic nanofibrous membrane may be a potential candidate as a novel heat-generating substrate for localized hyperthermia cancer therapy.  相似文献   

13.
Rod-like assembled magnetite (Fe3O4) nanoparticles (NPs) were successfully synthesized in a one-pot process using a polysiloxane template derived from a dialkoxysilane. The assembly was constructed using the thiol-ene click reaction between thiol groups on the polysiloxane chain and allyl groups on Fe3O4 NPs. The thiol-containing polysiloxane chain and the allyl-containing Fe3O4 NPs were synthesized by the hydrolysis–condensation of 3-mercaptopropyl(dimethoxy)methylsilane and iron (III) allylacetylacetonate, respectively. Fe3O4 NPs of around 5 nm were uniformly dispersed on the siloxane rods and exhibited neither remanent magnetization nor coercivity. A fluid containing a dispersion of rod-like assembled Fe3O4 NPs showed yield stress even without the application of an external magnetic field, whereas spherical Fe3O4 NPs exhibited no yield stress. The rod-like assembled Fe3O4 NPs on anisotropic siloxane clearly exhibited typical magnetorheological behavior.  相似文献   

14.
This study examined the applications of novel non-polymer magnetic ferrite nanoparticles (Fe3O4 NPs) labeled with 99mTc-pertechnetate (99mTcO4 ). The radiochemistry, chemistry, and biodistribution of Fe3O4 NPs labeled with 9mTcO4 were analyzed. This paper employed instant thin layer chromatography and magnetic adsorption to evaluate the labeling efficiency and stability of 99mTc-Fe3O4 at various reaction conditions. A scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, laser particle size analyzer, and superconducting quantum interference device magnetometer were used to analyze the physical and chemical properties of the Fe3O4 and 99Tc-Fe3O4 nanoparticles. The biodistribution and excretion of 99mTc-Fe3O4 were also investigated. Radiochemical analyses showed that the labeling efficiency was over 92% after 1 min in the presence of a reducing agent. Hydroxyl and amine groups covered the surface of the Fe3O4 particles. Therefore, 99Tc (VII) reduced to lower oxidation states and might bind to Fe3O4 NPs. The sizes of the 99Tc-Fe3O4 NPs were about 600 nm without ultrasound vibrations, and the particle sizes were reduced to 250 nm under ultrasound vibration conditions. Nonetheless, Fe3O4 NPs and 99Tc-Fe3O4 NPs exhibited superparamagnetic properties, and the saturation magnetization values were about 55 and 47 emu/g, respectively. The biodistribution showed that a portion of the 99mTc-Fe3O4 nanoparticles might embolize in a pulmonary capillary initially; the embolism radioactivity was cleared from the lungs and was then taken up by the liver. 99mTc-Fe3O4 metabolized very slowly only 1–2% of the injected dose (ID) was excreted in urine and about 2.37% ID/g was retained in the liver 4 h after injection. Radiopharmaceutically, 99mTc-Fe3O4 NPs displayed long-term retention, and only 99mTc-Fe3O4 NPs that dissociated to free pertechnetate could be excreted in urine. This research evaluated the feasibility of non-polymer magnetic ferrite NPs labeled with technetium as potential radiopharmaceuticals in nuclear medicine.  相似文献   

15.
An efficient procedure based on arginine‐modified Fe3O4@carbon magnetic nanoparticles (FCA MNPs) with highly dispersed copper nanoparticles (Cu NPs) and 92.8 ppm of Pd is reported for room temperature Suzuki reaction. For enhancing the activity of this Cu‐based heterogeneous catalyst, special arginine amino acid as a ligand with high content of heteroatoms was immobilized onto the Fe3O4@carbon MNPs to increase the electron density. Cu(II) ions were then loaded on the surface of the FCA MNPs and reduced to achieve uniformly dispersed Cu NPs. An aqueous mixture of metal hydroxides such as KOH, Ba(OH)2, Ca(OH)2, Mg(OH)2 as a green, non‐toxic and basic medium was used for the Suzuki reaction at room temperature. This catalyst could also be recovered and reused with no loss of activity over six successful runs.  相似文献   

16.
Herein, we represent the bio-synthesis of silver nanoparticles (Ag NPs) employing Oak gum as the green template, an efficient natural and non-toxic reductant and stabilizer based on its phytochemicals by using ultrasonic irradiation. The characterization of as-synthesized Ag NPs was performed through Fourier transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), elemental mapping, UV–Vis and X-ray diffraction (XRD). After the characterization, the synthesized Ag NPs/O. Gum was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using MeOH and BHT as reference molecules. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549, Calu6 and H358 human lung cell lines in-vitro through MTT assay. They had very low cell viability and high anti-human lung cancer activities dose-dependently against the cell lines without any cytotoxicity on the normal cell line (MRC-5). The IC50 of Ag NPs/O. Gum was found 161.25, 289.26 and 235.29 µg/mL against A549, Calu6 and H358 cell lines, respectively. Maybe significant anti-human lung cancer potentials of Ag NPs/O. Gum against common lung cancer cell lines are related to their antioxidant activities. So, these results suggest that synthesized Ag NPs/O. Gum as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.  相似文献   

17.
Nanoparticles (NPs) consisting of an Fe3O4 core and a thin gold shell (referred to as Au@Fe3O4 NPs) were self-assembled on the surface of a glassy carbon electrode modified with ethylenediamine. Following adsorption of hemoglobin, its interaction with the NPs was studied by UV–Vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Stable and well-defined redox peaks were observed at about ?350 mV and ?130 mV in pH 6.0 buffer. The modified electrode was used as a mediator-free sensor for hydrogen peroxide (H2O2), with a linear range from 3.4 µM to 4.0 mM of H2O2, and with a 0.67 µM detection limit (at an S/N of 3). The apparent Michaelis-Menten constant is 2.3 mM.  相似文献   

18.
Stable water dispersion of Fe3O4 magnetic nanoparticles (NPs) were successfully synthesized by using 3‐glycidoxypropyltrimethoxysilane (GPTMS) and Mg‐phyllo (organo) silicate known as aminoclay (AC) containing pendant amino groups with the approximate composition (R8Si8Mg6O16(OH)4, R = CH2CH2CH2NH2). The Fe3O4‐GPTMS magnetic NPs with an epoxy functional group are suitable for forming a covalent bond with the amine group of aminoclay in an epoxy ring opening reaction. Appropriate Fe3O4‐GPTMS‐aminoclay (FG‐AC) magnetic composite are promising carriers for the targeting and delivery of platinum‐based anticancer drugs. Analysis of the cytotoxicity of the nanostructures on a K562 leukemia cell line using a colorimetery assay shows that both the FG‐AC and cis‐platin/FG‐AC magnetic composite were biocompatible. The nanostructures characterizations were investigated by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and energy dispersive analysis of X‐ray techniques. Magnetic measurement revealed that the saturated magnetization of the FG‐AC nanocomposite reached 7.6 emu/g and showed the characteristics of magnetism.  相似文献   

19.
In this study, an eco-friendly and low-cost procedure for the synthesis of White tea plant extract modified magnetic nanocomposite (Fe3O4@W.tea) has been demonstrated. Ag nanoparticles (Ag NPs) were further decorated in situ over the designed Fe3O4@W.tea nanocomposite exploiting the plant derived phytochemicals as bio-reductant and stabilizer. The resulting Fe3O4@W.tea/Ag nanocomposite was characterized by various analytical methods like Fourier Transformed Infra Red (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), energy dispersive X-ray analysis (EDX) elemental mapping, transmission electron microscopy (TEM), vibrating-sample magnetometer (VSM), X-ray diffraction analysis (XRD), and inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. The as-synthesized bio-nanomaterial was used as an excellent heterogeneous and magnetically retrievable catalyst in the three-component condensation of 4-hydroxycoumarin, malononitrile and various aldehydes in refluxing aqueous media. A broad range of aromatic aldehydes underwent the reaction to produce diverse pyrano[3,2-c]chromene derivatives in very good yields irrespective of the nature of bearing functional groups or their respective geometrical positions. Due to superparamagnetic character, the material was easily magnetically decanted out and recycled for 8 successive times with preservation of its catalytic activity. After the chemical applications we also explored the material biologically in the resistance of human colon cancer and thereby studied the cytotoxicity over two standard cell lines, HT-29 and Caco-2. The conventional MTT assay was carried out over them which revealed an increase in % cell viability dose dependently. The IC50 values observed in the two cell lines were 384.2 μg/ml and 254.6 μg/ml respectively. In addition, DPPH radical scavenging test was performed for studying anti-oxidant activity. The results validate the administration of Fe3O4@W.tea/Agnanocomposite as a competent colon protective drug in the clinical trial studies over human.  相似文献   

20.
This study involved the utilization of a free radical-graft copolymerization reaction for the development of a novel adsorbent, namely, poly(butyl methacrylate)-grafted alginate/Fe3O4 nanocomposite (PBMA-gft-Alg/Fe3O4). Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, X-ray diffraction patterns analysis, and Fourier transform infrared spectroscopy (FT-IR) were carried out for the characterization of Fe3O4 NPs and PBMA-gft-Alg/Fe3O4 nanocomposites. The capability of nanocomposites and nanoparticles to adsorb dyes such as MG and MB, resulting in their removal from aqueous media, was evaluated under different conditions such as pH, temperature, contact time, and dose of adsorbent. Optimum parameters for adsorption of dyes were found to be pH of 10, 50°C, contact time of 180 min, and 0.2 g of adsorbent. Efficiency of the PBMA-gft-Alg/Fe3O4 nanocomposite was found to be significantly greater than that of Fe3O4 NPs for eliminating the desired dye. Langmuir, Freundlich, Sips, and Temkin models were used for testing the experimental data. Freundlich model was the one that best described the adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号