首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogels are encouraging for different clinical purposes because of their high water absorption and mechanical relation to native tissues. Injectable hydrogels can modify the invasiveness of utilization, which decreases recovery and surgical costs. Principal designs applied to create injectable hydrogels incorporate in situ formation owing to chemical or/and physical crosslinking. Here, we report nontoxic, thermosensitive, injectable hydrogels composed of gelatin (GEL) and oxidized alginate (OA) reinforced by silicon carbide nanoparticles (SiC NPs) and crosslinked with N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The mechanical characteristics of the hydrogels were examined via rheological analysis. The outcomes reveal that extending the SiC NPs contents enhances the mechanical properties around five times. The cross-sectional microstructure of the scaffolds comprising 0.25, 1.0, and 1.5% SiC NPs was scrutinized by FESEM, verifying porous structure with interconnected pores. Because of the smaller pore sizes in the hydrogels, the swelling rate has reduced at the higher content of SiC, which diminishes the water uptake. Additionally, the biodegradation study unveils that the hydrogels with SiC are more long-lasting than the hydrogel without SiC. By adding SiC NPs, a decrease is observed in the biodegradation and swelling ratio. The scaffold with a higher SiC NPs content (1.5%) manifested better cell attachment and was less cytotoxic than hydrogel without SiC. OA/GEL composites embedded SiC NPs have manifested excellent physical properties for tissue engineering in comparison with hydrogel without nanoparticles.  相似文献   

2.
A series of poly(acrylic acid-co-acrylamide) (PAA)/SiO2 hybrid hydrogels were prepared by in situ frontal polymerization. It was found that the increase in the concentration of SiO2 nanoparticles could lead to the increase in front velocity (V f) and the highest front temperature (T max). This may be attributed to the fact that SiO2 nanoparticles could increase the liquid viscosity of reaction mixture. The obtained PAA/SiO2 hybrid hydrogels were characterized by SEM and Fourier transform infrared spectroscopy spectrum and swelling measurements. The pH-sensitive swelling behaviors showed that the prepared PAA/SiO2 hybrid hydrogel had high pH sensitivity in different pH buffer solutions. Mechanical property test indicated that the PAA/SiO2 hybrid hydrogels exhibited a high compressive strength while remaining a high swelling radio (SR). The maximum of compressive strength and SR of the hybrid hydrogel may reach 42.6 kPa and 17.8, respectively, which was much higher than that of pure PAA hydrogel.  相似文献   

3.
Water responsive SiO2/cellulose nanocomposite hydrogels and films were constructed, for the first time, by dispersing SiO2 nanoparticles into cellulose solution in LiOH/urea solvent, and then by crosslinking with epichlorohydrin or regeneration in coagulation bath, respectively. The cellulose nanocomposite materials were characterized by Field emission scanning electron microscopy, FTIR, dynamic rheology, wide angle X-ray diffraction and mechanical test. The SiO2/cellulose nanocomposites at wet state or in water displayed unique behaviors, showing higher light transmittance than those before contacting with water. The results revealed that strong hydrogen-bonding interaction among water, cellulose and SiO2 led the good dispersion of SiO2 nanoparticles in the cellulose matrix. The incorporation of SiO2 nanoparticles improved the transmittance and mechanical strength of the cellulose hydrogels, and also enhanced the mechanical strength of the films. Especially, the cellulose/SiO2 nanocomposite films were milky at dry state, and changed to transparent after being soaked in water, different from the cellulose film without the SiO2 nanoparticles. In our findings, SiO2 and cellulose with water could form strong hydrogen bonding to create a homogenous network structure. The cellulose/SiO2 composite as a smart material exhibited moisture and solvent responsiveness, showing potential applications in moisture detection.  相似文献   

4.
The vascular system represents the key supply chain for nutrients and oxygen inside the human body. Engineered solutions to produce sophisticated alternatives for autologous or artificial vascular implants to sustainably replace diseased vascular tissue still remain a key challenge in tissue engineering. In this paper, cell‐laden 3D bioplotted hydrogel vessel‐like constructs made from alginate di‐aldehyde (ADA) and gelatin (GEL) are presented. The aim is to increase the mechanical stability of fibroblast‐laden ADA‐GEL vessels, tailoring them for maturation under dynamic cell culture conditions. BaCl2 is investigated as a crosslinker for the oxidized alginate‐gelatin system. Normal human dermal fibroblast (NHDF)‐laden vessel constructs are optimized successfully in terms of higher stiffness by increasing ADA concentration and using BaCl2, with no toxic effects observed on NHDF. Contrarily, BaCl2 crosslinking of ADA‐GEL accelerates cell attachment, viability, and growth from 7d to 24h compared to CaCl2. Moreover, alignment of cells in the longitudinal direction of the hydrogel vessels when extruding the cell‐laden hydrogel crosslinked with Ba2+ is observed. It is possible to tune the stiffness of ADA‐GEL by utilizing Ba2+ as crosslinker. In addition, a customized, low‐cost 3D printed polycarbonate (PC) perfusion chamber for perfusion of vessel‐like constructs is introduced.  相似文献   

5.
Silver nanoparticles supported on polyhedral oligomeric silsesquioxane (OA‐POSS) nanocrosslinked poly (ethylene glycol)‐based hydrogels (PEG600‐POSS/Ag NPs) as novel nanohybrid catalysts were synthesized for the first time. The as‐prepared nanohybrid hydrogels were fully characterized by FT‐IR, SEM, EDX, XRD, TEM and TGA. PEG600‐POSS/Ag NPs exhibited excellent catalytic performance for the reduction of 4‐nitrophenol (4‐NP) to 4‐aminophenol (4‐AP) in water at room temperature in the presence of borohydride.  相似文献   

6.
DNAzyme‐capped mesoporous SiO2 nanoparticles (MP SiO2 NPs) are applied as stimuli‐responsive containers for programmed synthesis. Three types of MP SiO2 NPs are prepared by loading the NPs with Cy3‐DBCO (DBCO=dibenzocyclooctyl), Cy5‐N3, and Cy7‐N3, and capping the NP containers with the Mg2+, Zn2+, and histidine‐dependent DNAzyme sequences, respectively. In the presence of Mg2+ and Zn2+ ions as triggers, the respective DNAzyme‐capped NPs are unlocked, leading to the “click” reaction product Cy3‐Cy5. In turn, in the presence of Mg2+ ions and histidine as triggers the second set of DNAzyme‐capped NPs is unlocked leading to the Cy3‐Cy7 conjugated product. The unloading of the respective NPs and the time‐dependent formation of the products are followed by fluorescence spectroscopy (FRET). A detailed kinetic model for the formation of the different products is formulated and it correlates nicely with the experimental results.  相似文献   

7.
In the present study, a series of iPP/SiO2 nanocomposites, containing 1, 2.5, 5, 7.5, 10 and 15 wt% SiO2 nanoparticles, were prepared by melt mixing in a twin screw co-rotating extruder. Poly(propylene-g-maleic anhydride) copolymer (PP-g-MA) containing 0.6 wt% maleic anhydride content was added to all nanocomposites at three different concentrations, 1, 2.5 and 5 wt%, based on silica content. Mechanical properties such as tensile strength at break and Young’s modulus were found to increase and to be mainly affected by the content of silica nanoparticles as well as by the copolymer content. For the tensile strength at break as well as for yield point, a maximum was observed, corresponding to the samples containing 2.5-5 wt% SiO2. At higher concentrations, large nanosilica agglomerates are formed that have as a result a decrease in tensile strength. Young’s modulus increases almost linearly on the addition of SiO2, and takes values up to 60% higher than that of neat iPP. Higher concentrations of PP-g-MA resulted in a further enhancement of mechanical properties due to silica agglomerate reduction. This finding was verified from SEM and TEM micrographs. Evidently the surface silica hydroxyl groups of SiO2 nanoparticles react with maleic anhydride groups of PP-g-MA and lead to a finer dispersion of individual SiO2 nanoparticles in the iPP matrix. The enhanced adhesion in the interface of the two materials, as a result of the mentioned reaction, has been studied and proved by using several equations. The increased Vicat point of all nanocomposites, by increasing the PP-g-MA content, can also be mentioned as a positive effect.  相似文献   

8.
Development of self‐healing polymers with spontaneous self‐healing capability and good mechanical performance is highly desired and remains a great challenge. Here, mechanical robust and self‐healable supramolecular hydrogels have been fabricated by using poly(2‐dimethylaminoethyl methacrylate) brushes modified silica nanoparticles (SiO2@PDMAEMA) as multifunctional macrocrosslinkers in a poly(acrylic acid) (PAA) network structure. The SiO2 nanoparticles serve as noncovalent crosslinkers, dissipating energy, whereas the electrostatic interactions between cationic PDMAEMA and anionic PAA render the hydrogel self‐healing property. This process provides a simple and broadly applicable strategy to produce mechanical strong and self‐healable materials.

  相似文献   


9.
The aim of this study is to develop a new method for the preparation of Fe3O4@SiO2–An NPs from copperas. The core–shell structures of the nanoparticles and chemical composition have been confirmed by TEM, XRD and FTIR techniques. Fluorescence Enhancement of Fe3O4@SiO2–An NPs with zinc ions was investigated by fluorescence emission spectra. The results indicated that the Fe3O4 NPs with a high purity (Total Fe 72.16 %) were obtained from copperas by chemical co-precipitation method and have a uniform spherical morphology with an average diameter of about 10 nm. The Fe3O4 NPs coated with silica nanoparticles were prepared, and an attempt had been made that the Fe3O4@SiO2 NPs were modified by 3-aminopropyltriethoxysilane and 9-anthranone successively. The recommended mole ratio of ethanol to water and the content of ammonia water added were 4:1 and 25 wt% respectively, which have an obviously effect on the combination of the final well-ordered MNPs with the amino functionalities and reactant components. The functionalized Fe3O4@SiO2–An NPs have a fluorescence property and this fluorescence effect can be enhanced with the Zn2+ ions attachment. Meanwhile, the saturated magnetization of Fe3O4@SiO2–An NPs was 37.8 emug?1 at 25 °C and this fluorescent material exhibited excellent magnetic properties. A new way was therefore provided for the comprehensive utilization of the unmarketable copperas. Moreover, the functionalized Fe3O4@SiO2–An NPs have a big potential in environmental decontamination, medical technology and biological science.  相似文献   

10.
The naturally occurring neocryptolepine (5-Methylindolo [2,3-b]quinoline) and its analogs exhibited prominent anticancer and antimalarial activity. However, the main problem of this class of compounds is their poor aqueous solubility, hampering their bioavailability and preventing their clinical development. To overcome the problem of insolubility and to improve the physicochemical and the pharmacological properties of 5-Methylindolo [2,3-b]quinoline compounds, this work was designed to encapsulate such efficient medical compounds into mesoporous silica oxide nanoemulsion (SiO2NPs). Thus, in this study, SiO2NPs was loaded with three different concentrations (0.2 g, 0.3, and 0.6 g) of 7b (denoted as NPA). The findings illustrated that the nanoparticles were formed with a spherical shape and exhibited small size (less than 500 nm) using a high concentration of the synthesized chemical compound (NPA, 0.6 g) and good stabilization against agglomeration (more than −30 mv). In addition, NPA-loaded SiO2NPs had no phase separation as observed by our naked eyes even after 30 days. The findings also revealed that the fabricated SiO2NPs could sustain the release of NPA at two different pH levels, 4.5 and 7.4. Additionally, the cell viability of the produced nanoemulsion system loaded with different concentrations of NPA was greater than SiO2NPs without loading, affirming that NPA had a positive impact on increasing the safety and cell viability of the whole nanoemulsion. Based on these obtained promising data, it can be considered that the prepared NPA-loaded SiO2NPs seem to have the potential for use as an effective anticancer drug nanosystem.  相似文献   

11.
Gelatin hydrogel pads have been prepared from a 10 wt.‐% gelatin solution that contained 2.5 wt.‐% AgNO3 in 70% v/v acetic acid by a solvent‐casting technique. The AgNO3‐containing gelatin solution was aged under mechanical stirring for various time intervals to allow for the formation of silver nanoparticles (nAgs). The formation of nAgs was monitored by a UV‐vis spectrophotometer. The morphology and size of the nAgs were characterized by transmission electron microscopy (TEM). To improve the water resistance of the hydrogels, various contents of glutaraldehyde (GTA) were added to the AgNO3‐containing gelatin solution to cross‐link the obtained gelatin hydrogels. These hydrogels were tested for their water retention and weight loss behavior, release characteristics of the as‐loaded silver, and antibacterial activity against Gram‐negative Escherichia coli and Gram‐positive Staphylococcus aureus. The AgNO3‐containing gelatin solution that had been aged for 5 d showed the greatest number of nAgs formed. The size of these particles, based on TEM results, was 10–11 nm. With an increase in the GTA content used to cross‐link the hydrogels, the water retention, the weight loss, and the cumulative amount of silver released were found to decrease. Finally, all of the nAg‐loaded gelatin hydrogels could inhibit the growth of the tested pathogens, which confirmed their applicability as antibacterial wound dressings.

  相似文献   


12.
A simple and rapid methodology has been developed to identify and separate silica nanoparticles (SiO2NPs) of different sizes in aqueous solution by capillary zone electrophoresis coupled to an evaporative light scattering detector (CE-ELSD). SiO2NPs were separated using 3 mM ammonium acetate buffer, containing 1% methanol at pH 6.9. SiO2NPs of 20, 50 and 100 nm were successfully separated under the optimum experimental conditions. CE coupled to ELSD has been proven to be an effective separation technique to determine particles with such small sizes, although the peaks are very close to each other, and it is a promising technique that may allow the separation of other types of nanoparticles. Confirmation by TEM and quantification of the SiO2 content was also carried out by inductively coupled plasma-mass spectrometry (ICP-MS). The new method was applied to the analysis of real samples, in order to assess its ability to avoid matrix effects in the determination of SiO2NPs in these kinds of samples.  相似文献   

13.
Nanocomposite polymer electrolytes based on the system poly(vinylidene fluoride-co-hexafluoropropylene)–liquid electrolyte 1 mol/L LiBF4 in gamma-butyrolactone which is modified by introducing up to 10 wt % of SiO2 nanopowder (an average particle size of 7 nm) are synthesized and characterized. The introduction of SiO2 nanoparticles worsens the elasticity of films but increases their fracture stress to 24 MPa. The conductivity of the nanocomposite electrolytes containing SiO2 nanoparticles is higher than that without SiO2 and attains 3.7 mS/cm at 20°C for the electrolyte containing 1.25 wt % SiO2. Upon the introduction of SiO2 nanoparticles, the electrochemical stability of electrolytes grows by 0.50–0.85 V and attains 6.7 V relative to Li/Li+.  相似文献   

14.
In the presence of a small amount of a proteinous amino acid (arginine/tryptophan/histidine) or a nucleoside (adenosine/guanosine/cytidine), graphene oxide (GO) forms supramolecular stable hydrogels. These hydrogels have been characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) analysis, Raman spectroscopy, and rheology. The morphology of the hydrogel reveals the presence of nanofibers and nanosheets. This suggests the supramolecular aggregation of GO in the presence of an amino acid/nucleoside. Rheological studies of arginine containing a GO-based hydrogel show a very high G' value (6.058 × 10(4) Pa), indicating the rigid, solid-like behavior of this gel. One of these hydrogels (GO-tryptophan) has been successfully utilized for the in situ synthesis and stabilization of Au nanoparticles (Au NPs) within the hydrogel matrix without the presence of any other external reducing and stabilizing agents to make Au NPs containing the GO-based nanohybrid material. The Au NPs containing the hybrid hydrogel has been characterized by using UV/vis spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). In this study, gold salt (Au(3+)) has been bioreduced by the tryptophan within the hydrogel. This is a facile "green chemical" method of preparing the GO-based nanohybrid material within the hydrogel matrix. The significance of this method is the in situ reduction of gold salt within the gel phase, and this helps to decorate the nascently formed Au NPs almost homogeneously and uniformly on the surface of the GO nanosheets within the gel matrix.  相似文献   

15.
In the present study, modification of nanoparticles (NPs) was investigated to mitigate aggregation of SiO2 nanoparticles and improve the polymeric membrane's performance. For this purpose, the surface of SiO2 nanoparticles was activated with amine groups, and polymethacrylic acid (PMAA) was grafted on the surface of NPs by atom transfer radical polymerization. Modified NPs were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) tests. Polyethersulfone (PES) membranes were fabricated with both SiO2 and SiO2‐g‐PMAA NPs via nonsolvent‐induced phase separation method. The fabricated membranes were characterized regarding their permeability, hydrophilicity, and porosity properties, and their separation efficiency was tested using the synthetic oil‐in‐water emulsion. The surface and cross‐sectional morphologies of membranes were observed by field emission scanning electron microscopy (FESEM). The experimental trials showed that modified NPs dispersed more uniformly in the structure of membranes and hydroxyl groups on the surface of NPs acted more effectively. Modification of NPs enhance the membrane performance in terms of permeate flux, hydrophilicity, and porosity. NPs modification improved the permeate flux about 46%. Oil rejection for all tested membranes was more than 98%, and modification of NPs did not reduce the rejection of membranes. The optimum concentration was obtained as 1 wt.% and 1.5 wt.% for SiO2 and SiO2‐g‐PMAA, respectively. Aggregation effect dominated at concentrations beyond the optimum values that decreased the permeate flux, consequently.  相似文献   

16.
17.
Water barrier properties and tribological performance (hardness and wear behavior) of new hybrid nanocomposites under dry and wet conditions were investigated. The new fabricated hybrid nanocomposite laminates consist of epoxy reinforced with woven and nonwoven tissue glass fibers and two different types of nanoparticles, silica (SiO2) and carbon black nanoparticles (C). These nanoparticles were incorporated into epoxy resin as a single nanoparticle (either SiO2 or C) or combining SiO2 and C nanoparticles simultaneously with different weight fractions. The results showed that addition of carbon nanoparticles with 0.5 and 1 wt% resulted in maximum reduction in water uptake by 28.55% and 21.66%, respectively, as compared with neat glass fiber reinforced epoxy composites. Addition of all studied types and contents of nanoparticles improves hardness in dry and wet conditions over unfilled fiber composites. Under dry conditions, maximum reduction of 47.26% in weight loss was obtained with specimens containing 1 wt% carbon nanoparticles; however, in wet conditions, weight loss was reduced by 17.525% for specimens containing 0.5 wt% carbon nanoparticles as compared with unfilled fiber composites. Diffusion coefficients for different types of the hybrid nanocomposites were computed using Fickian and Langmuir models of diffusion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Hollow SiO2/TiO2 nanoparticles decorated with Ag nanoparticles (NPs) of controlled size (Ag@HNPs) were fabricated in order to enhance visible‐light absorption and improve light scattering in dye‐sensitized solar cells (DSSCs). They exhibited localized surface plasmon resonance (LSPR) and the LSPR effects were significantly influenced by the size of the Ag NPs. The absorption peak of the LSPR band dramatically increased with increasing Ag NP size. The LSPR of the large Ag NPs mainly increased the light absorption at short wavelengths, whereas the scattering from the SiO2/TiO2 HNPs improved the light absorption at long wavelengths. This enabled the working electrode to use the full solar spectrum. Furthermore, the SiO2 layer thickness was adjusted to maximize the LSPR from the Ag NPs and avoid corrosion of the Ag NPs by the electrolyte. Importantly, the power conversion efficiency (PCE) increased from 7.1 % with purely TiO2‐based DSSCs to 8.1 % with HNP‐based DSSCs, which is an approximately 12 % enhancement and can be attributed to greater light scattering. Furthermore, the PCEs of Ag@HNP‐based DSSCs were 11 % higher (8.1 vs. 9.0 %) than the bare‐HNP‐based DSSCs, which can be attributed to LSPR. Together, the PCE of Ag@HNP‐based DSSCs improved by a total of 27 %, from 7.1 to 9.0 %, due to these two effects. This comparative research will offer guidance in the design of multifunctional nanomaterials and the optimization of solar‐cell performance.  相似文献   

19.
The size effect of silica nanoparticles (SiO2) on thermal decomposition of poly(methylmethacrylate) (PMMA) was investigated by the controlled rate thermogravimetry. Thermal degradation temperature of PMMA–SiO2 composites depended on both fraction and size of SiO2, the thermal degradation temperature of 23 nm (diameter) SiO2–PMMA (6.1 wt%) was 13.5 °C higher than that of PMMA. The thermal stabilities of 17 nm SiO2–PMMA (3.2 wt%) and 13 nm SiO2–PMMA (4.8 wt%) were 21 and 23 °C, respectively, higher than that of PMMA without SiO2. The degree of degradation improvement was increased linearly with the surface area of SiO2. The number of surface hydroxyl group in unit volume of SiO2 particle increased with increasing the specific surface area of SiO2, and the interaction between hydroxide group of SiO2 and carbonyl group of PMMA had an important role to improve the thermal stability of PMMA.  相似文献   

20.
Silicone-acrylic resin (SAR) was prepared from acrylic monomers and silicone prepolymer by the free radical solution polymerization, and then mixed TiO2 and SiO2 nanoparticles modified by KH570 were added to prepare nanocomposite coating. Thermogravimetric analysis and contact angle measurements showed that the acrylic resin modified by silicone prepolymer exhibited an improved thermostability and a better hydrophobicity compared with the unmodified sample. The adding of nanoparticles further increased the hydrophobicity. The contact angle of modified silicone-acrylic resin with mixed TiO2 and SiO2 nanoparticles of 3 wt% is the highest, 108.4°. The UV resistance and weather resistance of the modified silicone-acrylic resin are significantly improved. It was also found through electrochemical impedance spectroscopy that the corrosion resistance was significantly improved by the addition of mixed TiO2 and SiO2 nanoparticles. Modified silicone-acrylic resin with mixed TiO2 and SiO2 nanoparticles of 3 wt% and 5 wt% coating system maintains an excellent anticorrosion performance (coating resistance Rc of more than 109 Ω cm2) even at 3.5% NaCl electrolyte medium till to 1800 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号