首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the presence of various phenolic compounds in D.sophia, this plant may have an inhibitory effect on α-Glc and ultimately diabetes control. Therefore, this work aims to scrutinize total phenolic, flavonoid contents, antioxidant capacity, and α-Glc inhibitory activity in aerial parts of methanolic D.sophia extract. The methanolic flower extracts were selected from among aerial parts for the experimental study of anti-diabetic effects by α-Glc inhibitory assays. The flower extracts were also studied by GC/MS to detect the compounds. The total phenolic and flavonoid contents were 21.38 ± 0.93 GAE/g and 96.2 ± 0.20 QE/g, respectively. The IC50 value of flower extract for α-Glc inhibition with mixed (Competitive/non-competitive) mode was found to be 20.34 ± 0.11 mg/ml. Furthermore, in-vivo studies showed that the blood glucose level reduced after consumption of flower extract compared to the control group. Twenty-one compounds were identified by GC/MS technique. These compounds were assessed for high docking scores against α-Glc in silico. Docking score calculations exhibited that the DES-α-Glc complex had a significantly higher binding energy (-6.13 Kcal/mol) than other compounds. The DES-α-Glc complex which displayed a higher docking energy value than the ACR was subjected to MDs studies. The findings of this study suggest that the flower extract of D.sophia can be used as a suitable additive in syrups or foods with anti-diabetic capacity.  相似文献   

2.
In this study, a new series of aliphatic, cyclic, and heterocyclic derivatives of haemanthamine was designed and synthesized to enhance its inhibitory effect on the proliferation and viability of cancer cells. A library of haemanthamine derivatives was subjected to 10 μM single-dose cytotoxicity screening against a panel of human cell lines of various histotypes. Initial cytotoxicity evaluation of the parent haemanthamine (1) and a series of twenty-nine (230) semisynthetic analogues showed that for some of the newly formed derivatives, a certain cytotoxic effect was observed, in one case even higher than that of the parent compound. Specifically, 11-O-(4-chloro-3-nitrobenzoyl)haemanthamine (21) showed an enhanced antiproliferative effect, where the mean growth percent (GP) value was 5% compared to haemanthamine, leading to a decrease in the GP to 25%. Among ten cell lines tested, derivative 21, bearing a substituted aromatic ester bond via C-11 of haemanthamine, had excellent activity for inhibiting the growth of HeLa (IC50 = 0.2 ± 0.1 μM), A549 (IC50 = 1.7 ± 0.1 μM) and HT-29 (IC50 = 2.2 ± 0.1 μM) cells. When evaluating response kinetics, we found that 21 and haemanthamine dose- and time-dependently suppressed the proliferation of A549 cells. In contrast to haemanthamine (1), Trypan blue and lactate dehydrogenase (LDH) release assay revealed that 21 was capable of reducing the survival of A549 cells.  相似文献   

3.
IntroductionScientific evidence about biological profile of natural products can support their traditional uses. The current work was aimed to assess phytochemical and biological profile of nine medicinal plants collected from Herbalists.MethodsExtracts prepared in different solvents were subjected to phytochemical, antioxidant, enzyme inhibitory, cytotoxic, and antimicrobial activities. Reverse phase-high performance liquid chromatography (RP-HPLC) analysis was performed for the quantification of polyphenols.ResultsResults showed methanol extract (M) being potent as compared to others. Gentian lutea M showed maximum extract recovery (15.00 ± 0.11 % w/w) and TFC (30.82 ± 0.21 μg QE/mg extract). Nigella sativa M displayed highest TPC (44.99 ± 0.43 μg GAE/mg extract) and TAC (334.72 ± 0.35 μg AAE/ mg extract). Results showed noteworthy quantities of vanillic acid, rutin, kaempferol, emodin in ethyl acetate (EA) and methanol (M) extracts of plants assessed by RP-HPLC. Gentisic acid was highest (11.75 µg/mg extract) in T. arjuna M extract. Similarly, maximum %FRSA (82.28 ± 0.03 %) and TRP (160.40 ± 0.38 μg AAE/ mg extract) were depicted by Terminalia chebula and Chamomilla recutita, respectively. Moreover, Mentha longifolia and G. lutea M demonstrated noteworthy (p < 0.05) antibacterial activity against Staphylococcus aureus (14 ± 0.7 mm) and Klebsiella pneumoniae (12 ± 0.3 mm), respectively. Curcuma amada, C. recutita, Murraya koenigii and G. lutea M had significant α-glucosidase activity. Another good solvent for extraction was ethyl acetate (EA), whose extracts were secondary to methanol in producing significant biological profile. For example, EA of N. sativa (TPC: 1.46 ± 0.45 µg GAE/ mg extract), G. lutea (TRP: 160.33 ± 0.52 μg AAE/mg extract: ZOI of 12 ± 0.5 mm in K. pneumoniae) and Mormodica charantia (α-amylase inhibition: 39.5 ± 0.10 %) showed significant bioactivities. All extracts displayed mild antifungal protein kinase inhibition activities and were significantly (greater than80 %: p < 0.05) cytotoxic to brine shrimps with negligible hemolytic activity.ConclusionBriefly, variable polarity solvent extracts of studied plants will be processed for isolation of antioxidant, cytotoxic, carbohydrate enzyme inhibitory and antibacterial compounds.  相似文献   

4.
Graviola, soursop, or guanabana (Annona muricata L.), is an ethnomedical fruit consumed to alleviate headache, diarrhea, diabetes, and cancer. Pericarp is the inedible part of graviola least studied in comparison to seeds and leaves, even thought, it contains the highest concentration of graviola total polyphenols. Anticancer effect of graviola pericarp has been demonstrated in crude extracts attributing the effect to acetogenins, however, crude extracts contain several active molecules. Thus, the present work aimed to fractionate and purify an ethanolic crude extract from graviola pericarp. Purified graviola pericarp fraction (PGPF) was evaluated on cancerous and non-cancerous cell lines, and then was identified by NMR, TOF-MS, and HPLC. Finally, an in silico analysis was performed to predict targets cancer-related of the molecule detected. Our results revealed IC50 values for cervix adenocarcinoma (HeLa), hepatocellular carcinoma (HepG2), triple-negative breast cancer (MDA-MB-231), and non-cancerous cell line (HaCaT) of 92.85 ± 1.23, 81.70 ± 1.09, 84.28 ± 1.08, and 170.2 ± 1.12 µg PGPF/mL, respectively. In vitro therapeutic indexes estimated as quantitative relationship between safety and efficacy of PGPF were 1.83, 2.08, and 2.02 for HeLa, HepG2, and MDA-MB-231, respectively. The NMR analysis revealed astragalin (kaempferol-3-O-glucoside) in PGPF, a flavonoid not reported in graviola pericarp until now. Astragalin identity was confirmed by TOF-MS and HPLC. In silico results support previous reports about astragalin modulating proteins such as Bcl-2, CDK2, CDK4, MAPK and RAF1. Also, results suggest that astragalin may interact with other cancer-related proteins not associated previously with astragalin. In conclusion, astragalin may be contributing to the anticancer effect observed in graviola pericarp extracts.  相似文献   

5.
Rutin is a bioactive compound that possesses anti-tumor activities through triggering apoptosis. Triple-negative breast cancer (TNBC) is insensitive to targeted anti-tumoral drugs, and drug resistance in TNBC poses a challenge for a successful cure. The accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER) results in cellular stress that initiates a specialized response designated as the unfolded protein response. This study aimed to find potential ER stress targets in triple-negative breast cancer. The viability of cells was evaluated using an MTT assay. Cell migration and proliferation were done by wound scratch and colony formation assay. Cell cycle detection, measurement of ER stress, mitochondrial membrane potential disruption, and cell death identification was performed using flow cytometry. The interaction of rutin with ER stress proteins is predicted using in silico docking. The pattern of gene expression was determined by qRT-PCR. The elevated rate of cell viability, cell cycle arrest, ER stress, MMP, and apoptotic induction was observed in combination treatment. Rutin exhibited the highest glide score with ASK1 and JNK. The results of qRT-PCR showed that rutin induced apoptosis through upregulation of ASK1 and JNK. The present study provides strong evidence supporting an important role of the ER stress response in mediating rutin-induced apoptosis in triple-negative breast cancer.  相似文献   

6.
Cryptosporidiosis is a global zoonotic infection that causes water-borne epidemics of diarrhea. Nevertheless, there are few available therapies for cryptosporidiosis. However, the gold standard drug nitazoxanide (NTZ) has limited efficacy in malnourished and immunocompromised patients. Furthermore, Verbena officinalisL. is a herbal plant widely used in traditional medicine to cure several health disorders and is recognized to possess numerous therapeutic applications. In the present study, the phytochemical composition of aerial part extract from Verbena officinalis was investigated via LC-ESI-MS/MS.Furthermore, the anti-cryptosporidial activity was also performed using an animal model. Fifty mice were divided into 5 groups; GI: non-infected (Negative control), GII: infected non treated (positive control), GIII: infected, treated with NTZ, GIV: infected, treated with V. officinalis n-butanol extract, GV: infected, treated with a combination of NTZ and V. officinalis. Parasitological examination revealed a highly significant difference (P-value < 0.001) between GIII, GIV, and GV compared to GII regarding the mean number of Cryptosporidium spp. oocyst in the stool. Moreover, GV showed the best efficacy with a percentage of 87%. Also, histopathological examination showed variable degrees of improvement in the villous broadening, and the inflammatory infiltrates in the small intestine with a reduction of hepatocyte degeneration and mononuclear infiltration in GIII, GIV, and GV compared to GII, with the best results seen in GV. Additionally, the chemical profiling of n-butanol extract identified 16 secondary metabolites comprising flavonoids, phenolic acids, phenylethanoids, and coumarins. In conclusion, V. officinalis is an intrinsic supplier of biologically active metabolites with outstanding anti-parasitic and possible anti-inflammatory effects.  相似文献   

7.
Inspired by the wide application of amides in plant pathogens, a series of novel 1-substituted-5-trifluoromethyl?1H?pyrazole-4-carboxamide derivatives were designed and synthesized. Bioassay results indicated that some target compounds exhibited excellent and broad-spectrum in vitro and certain in vivo antifungal activities. Among them, the in vitro EC50 values of Y13 against G. zeae, B. dothidea, F. prolifeatum and F. oxysporum were 13.1, 14.4, 13.3 and 21.4 mg/L, respectively. The in vivo protective activity of Y13 against G. zeae at 100 mg/L was 50.65%. SAR analysis revealed that the phenyl on the 1-position of the pyrazole ring was important for this activity. An antifungal mechanism study of Y13 against G. zeae demonstrated that this compound may disrupt the cell membrane of mycelium, thus inhibiting the growth of fungi. These mechanistic study results were inconsistent with those for traditional amides and may provide a novel view for deep study of this series of pyrazole carboxamide derivatives.  相似文献   

8.
Purpose of studyDodonaea viscosa Jacq. is an ethnomedicinal plant that has been extensively used for the treatment of gout, rheumatism and pain. Current study was undertaken to mine its antioxidant, antimicrobial, cytotoxic and antidiabetic potential. Chromogenic assays were employed to establish plant’s multimode antioxidant profile whereas HPLC fingerprinting was performed to quantify polyphenols. Standard brine shrimp lethality, MTT and SRB assays proved its cytotoxicity potential.ResultsAmong all the extracts (flower, leaf, stem and root), maximum extract recovery (22% w/w), gallic acid equivalent total phenolic content (20.11 ± 0.11 ug GAE/mg DW), ascorbic acid equivalent total antioxidant capacity (22.5 ± 0.07 µg/mg DW) and total reducing power (31.1 ± 1.13 µg/mg DW) were recorded in the distilled water + acetone extract of leaf. The acetone extract of leaf showed maximum quercetin equivalent total flavonoid content (4.78 ± 0.13 µg/mg DW). HPLC-DAD analysis revealed significant amount of rutin, vanillic acid, coumaric acid, ferulic acid, gallic acid, syringic acid, cinnamic acid, gentisic acid, catechin, caffeic acid, apigenin and myricetin in the different plant parts. Maximum scavenging potential was exhibited by methanol + ethyl acetate stem extract (IC50 = 23.8 µg/ml). The highest antibacterial potential was found in flower (85.7%) and root (71.4%) extracts. The ethanol + ethyl acetate (1:1) leaf extract showed noteworthy toxicity against brine shrimps (LC50 = 95.46 µg/ml) while a notable antiproliferative activity against THP-1 (IC50 = 3.4 µg/ml) and Hep G2 (IC50 = 20 µg/ml) cell lines was shown by ethanol + ethyl acetate extracts (1:1) of stem and root, respectively. A moderate inhibition of α-amylase enzyme was observed in all parts of the plant.ConclusionThe results of the present study suggest D. viscosa as a potential source of antioxidant, anticancer and α-amylase inhibitory phytochemicals.  相似文献   

9.
In this article, we display on the synthesis and biological evaluation of a new series of thiazolylpyrimidine 3a-l and thiazolidinylpyrimidine derivatives 5a-e. The structures of the new compounds were confirmed by using different spectral techniques including NMR, IR, mass spectroscopy in addition to elemental analyses. The cell viability of the new compounds was assessed against normal human mammary gland epithelial (MCF-10A) cell line. Data revealed that none of the compounds examined exhibited cytotoxic effects, and the cell viability for the compounds examined at 50 µM was greater than 87%. The antiproliferative activity of 3a-l and 5a-e was evaluated against four human cancer cell lines where the compounds showed promising activity. The most potent derivatives were compounds 3a, 3c, 3f, 3i, and 5b with GI50 values ranging from 0.90 µM to 1.70 µM against the four cancer cell lines in comparison to doxorubicin (GI50 = 1.10 µM). Compounds 3a, 3c and 3i showed potent antiproliferative activity with dual inhibitory action against EGFR and BRAFV600E. Compounds 3a, 3c, and 3i demonstrated promising AutoDock scores towards EGFR and BRAFV600E with values of ? 9.1 and ? 8.6, ?9.0 and ? 8.5, and ? 8.4 and ? 8.0 kcal/mol, respectively. The physicochemical and pharmacokinetic characteristics of 3a, 3c, and 3i were anticipated, demonstrating their oral bioavailability.  相似文献   

10.
Interfacial layers have been widely applied to study the formation and stability of emulsion-based systems. However, the application of isolated interfaces to address digestibility of emulsions is often limited because of the complexity of experimental methods and results. This review summarizes the latest developments in analytical methods and literature data on effects of digestion on interfacial layers. Particular emphasis is given to understand the changes on interfacial magnitudes during oral, gastric, and duodenal digestion, either applied separately or sequentially. Limitations of interfacial aspects and key factors that influence emulsion microstructure in bulk and lipid digestion are identified. Understanding the behavior of interfacial layers upon gastrointestinal digestion promotes an accurate tracking of the physiological fate of emulsions.  相似文献   

11.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   

12.
Several metal-based nanoparticles (NPs) have been found to be toxic and are known to exert adverse health outcomes with irreversible side effects. This highlights the need to discover effective, stable, and biocompatible therapeutic components using natural sources. Here, a hexane extract of Nigella sativa seeds was used to synthesize iron oxide NPs (NS-IONPs) embedded with N. sativa phytoconstituents. The extract acted as a reducing agent that restricted the size of the NS-IONPs to 5–6 nm, signifying the potential to be cleared through the renal system. The fabricated NS-IONPs had a prominent effect on pathogenic gram-negative bacteria, E. coli (19.3 mm) and Salmonella typhi (14.2 mm) and lung cancer cells (lowest IC50 of 18.75 µg/mL) mainly by binding to the phospholipid components of the cell membrane. This resulted in cell shrinkage and further inhibited cell growth. Transmission electron microscopy analyses revealed that the mechanisms of cellular NP uptake varied depending on the cell type. Accumulation of NS-IONPs inside the cell increased BAX expression and arrested the cells at the G0/G1 phase, thereby conspicuously extending the G0 phase to initiate necrosis. Thus, these finding suggest that the synthesized NS-IONPs exhibited high antibacterial activity and effective cytotoxicity against cancer cell lines A549 and HCT116 compared to IONPs. The innovation of the current study is that the biogenic fabrication of IONPs is simple and cost effective results in stable nanomaterial, NS-IONPs with potential antibacterial and anticancer activity, which can be explored furthermore for various biomedical applications.  相似文献   

13.
《印度化学会志》2023,100(6):100997
Schiff bases are versatile compounds for the design of the ternary complex. An experiment has been made to synthesize two novel complexes of Co(II). Here, The primary ligand, L1 was prepared by the condensation reaction of o-toluidine with 3-formyl chromone or o-toluidine with 3- methylquinolinecarbaldehyde and the secondary ligand which was 8-Hydroxyquinoline. These potent complexes were prepared by condensation of primary and secondary ligands with Cobalt salt. The reaction was performed through the conventional reflux method. The newly synthesized chromone and quinoline derived novel compounds are proposed to have significant antimicrobial activity against selective strains of bacteria and fungi. This can be great opportunity for researchers and the use of biological applications of the synthesized novel compounds can be a part of unique field of research for the future to be focus. Chromone derivative has great biological diversity in the medicinal and pharmaceutical fields. Along with these compounds, quinoline derivatives also have antibacterial, and antifungal activities. The synthesized ligand and complex were characterized by elemental analysis, molecular weight determination, magnetic moment measurement, melting point determination, spectral analysis (IR, UV–Vis, 1H NMR, Mass, etc.), and X-ray diffraction. The synthesized complexes were paramagnetic and non-electrolytic in nature. The Uv–Vis, FTIR, NMR, and Mass spectra suggest the octahedral geometry of the complexes. The synthesized compounds were further evaluated for biological studies against selected bacterial and fungal strains. It has been observed that the antimicrobial activity of most of the complexes are better than that of ligands.  相似文献   

14.
Double transesterification from vegetable oils could play an important role in biodiesel and biolubricant production, with the possible implementation of biorefineries to replace refineries based on petroleum. The oxidative stability of the original sample will influence the quality of the intermediate and final products, recommending highly stable raw materials or the use of antioxidants to keep quality parameters during storage. The aim of this work was to obtain a stable biolubricant, assessing its production through a double transesterification with methanol and pentaerythritol from high-oleic safflower oil and adding antioxidants, paying attention to quality parameters. Consequently, a biorefinery that produced high-quality products was proposed. In conclusion, high biodiesel and biolubricant yields were obtained (>97 and >94%, respectively) with the following chemical conditions for the latter: FAME/alcohol ratio, 1:0.33; pressure, 260 mmHg; catalyst concentration, 1.0%; temperature, 160 °C. The oxidative stability of biodiesel complied with the standard (10.78 h) due to its high methyl oleate content (exceeding 80%), whereas this parameter was shorter for the biolubricant (2.86 h), possibly due to its molecular structure. Consequently, antioxidant addition was needed, and tert-Butylhydroquinone at low concentration (500 ppm) kept viscosity and acid number of high-oleic safflower biolubricant during oxidation conditions (up to 8 h). However, tannic acid did not keep these properties in biolubricant. In conclusion, by using the right antioxidant, all the products of the proposed biorefinery were stable during oxidizing conditions, making this biorefinery more competitive.  相似文献   

15.
Heterocyclic compounds occupy an important position in chemistry because of their wide range of uses in drug design, photochemistry, agrochemicals, and other fields. Indole and indazole scaffolds are available from natural and synthetic sources, and molecules containing these scaffolds have been shown to have various biological effects, including anti-inflammatory, antibacterial, antiviral, antifungal, analgesic, anticancer, antioxidant, anticonvulsant, antidepressant, and antihypertensive activities. Indole and indazole molecules bind to receptors with high affinity, and thus are useful for the study of bioactive compounds involved in multiple pathways. In this review, we highlight the antihypertensive activity and the mechanisms of action of indole and indazole derivatives. In addition, structure–activity relationship studies of the antihypertensive effect are presented.  相似文献   

16.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

17.
Justicia vahlii Roth. (acanthaceae) is an important medicinal food plant used in pain relief and topical inflammation. The present study aimed to evaluate phytochemical composition, toxicity, anti-inflammatory, antioxidant and enzyme inhibition potential of n-butanol extract of J. vahlii (BEJv). The extract prepared through maceration was found rich in total phenolic contents (TPC) 196.08 ± 6.01 mg of Gallic acid equivalent (mg GAE/g DE) and total flavonoid contents (TFC) 59.08 ± 1.32 mg of Rutin equivalent (mg RE/g DE). The UPLC-Q-TOF-MS analysis of BEJv showed tentative identification of 87 compounds and 19 compounds were detected in GC–MS analysis. The HPLC-PDA quantification showed the presence of 14 polyphenols amongst which kaempferol (3.45 ± 0.21 µg/ mL DE) and ferulic acid (2.31 ± 1.30 µg/ mL DE) were found in highest quantity. The acute oral toxicity study revealed the safety and biocompatibility of the extract up to 3000 mg/kg in mice. There was no effect of BEJv on human normal liver cells (HL 7702) and very low cytotoxic effect on liver cancer cells (HepG2) and breast cancer cells (MCF-7). In anti-inflammatory evaluation, the BEJv treated groups showed significant inhibition (p < 0.001) of late phase carrageenan induced paw edema at 400 mg/kg and increased the levels of oxidative stress markers; catalase, superoxide dismutase (SOD) and glutathione (GSH) while decreased the inflammatory markers; interleukin-1beta (IL-β) and tumor necrosis factor alpha (TNF-α) in paw tissue of mice. BEJv displayed highest results in Ferric reducing antioxidant power (FRAP) assay 97. 21 ± 2.34 mg TE (trolox equivalent)/g DE, and highest activity 3.32 ± 0.31 mmol ACAE (acarbose equivalent)/g D.E against α-glucosidase. Docking study showed good docking score by the tested compounds against the various clinically significant enzymes. Conclusively the current study unveiled J. vahlii as novel non-toxic source with good antioxidant-mediated anti-inflammatory potential which strongly back the traditional use of the species in pain and inflammation.  相似文献   

18.
Dioscorea nipponica Makino exhibits many biological activities, including relieving cough, eliminating phlegm and preventing asthma. The present study extensively evaluated the extraction process, major components, antioxidant, antibacterial and anti-inflammatory activities of total saponins extraction from Dioscorea nipponica Makino. In this study, the optimal extraction process of total saponins extract was optimized by single-factor test and response surface methodology as follows: extraction time 25 min, ethanol concentration 50 % and liquid to material ratio 55:1 ml/g, and the extraction rate was 1.72 %. Eighteen components were initially analyzed by UPLC-QTOF-MS method. Although total saponins extract exhibited mild antibacterial activities against Escherichia coli, Salmonella, Staphylococcus aureus and Streptococcus, and antioxidant activities against ferric-ion, ABTS and DPPH radicals, the perfect anti-inflammatory activity of TSE was demonstrated by significantly reducing the content of NO and the phagocytic activity in LPS induced RAW 264.7 cells, which provided a theoretical basis for the research and development of new anti-inflammatory Chinese medicine.  相似文献   

19.
Neomangiferin (NMF) is an extremely special xanthone that could be simultaneously attributed to C-glycoside and O-glycoside with a variety of biological activities, such as anti-inflammatory, antitumor, antipyretic, and so on. So far as we know, the metabolism profiling has been insufficient until now. Herein, Drug Metabolite Cluster Centers (DMCCs)-based Strategy has been developed to profile the NMF metabolites in vivo and in vitro. Firstly, the DMCCs was proposed depending on literature-related and preliminary analysis results. Secondly, the specific metabolic rule was implemented to screen the metabolites of candidate DMCCs from the acquired Ultra High Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS) data by extracted ion chromatography (EIC) method. Thirdly, candidate metabolites were accurately and tentatively identified according to the pyrolysis law of mass spectrometry, literature reports, comparison of reference substances, and especially the diagnostic product ions (DPIs) deduced preliminarily. Finally, network pharmacology was adopted to elucidate the anti-inflammatory action mechanism of NMF on the basis of DMCCs. As a result, 3 critical metabolites including NMF, Mangiferin (MF) and Norathyriol (NA) were proposed as DMCCs, and a total of 61 NMF metabolites (NMF included) were finally screened and characterized coupled with 3 different biological sample preparation methods including solid phase extraction (SPE), acetonitrile precipitation and methanol precipitation. Among them, 32 metabolites were discovered in rat urine, 30 in rat plasma, 12 in rat liver, 9 metabolites in liver microsomes and 8 in rat faeces, respectively. Our results also illustrated that NMF primarily underwent deglucosylation, glucuronidation, methylation, sulfation, dihydroxylation and their composite reactions in vivo and in vitro. Additionally, network pharmacology analysis based on DMCCs revealed 85 common targets of disease-metabolites, and the key targets were TNF, EGFR, ESR1, PTGS2, HIF1A, IL-2, PRKCA and PRKCB. They exerted anti-inflammatory effects mainly through the pathways of inflammatory response, calcium-dependent protein kinase C activity, nitrogen metabolism, pathways in cancer and so on. In general, our study constructed a novel strategy to comprehensive elucidate the biotransformation pathways of NMF in vivo and in vitro, and provided vital reference for further understanding its anti-inflammatory action mechanism. Moreover, the established strategy could be generalized to the metabolism and action mechanism study of other natural products.  相似文献   

20.
A series of twelve novel hybrids of cinnamic acid and thiocarbohydrazones were designed, synthesized in high yield using a simple coupling strategy via acid chlorides, and evaluated for their impact against Mycobacterium tuberculosis (Mtb) and cancer cells survival. Among them, compound 3 demonstrated strong anti-Mtb activity by reducing bacilli survival for>90 % in all three treated Mtb isolates, whereas isoniazid and rifampicin did not. Moreover, compound 3 didn’t affect vitality of HepG-2 cells, implying on advantageous hepatotoxicity profile compared to current therapeutic options for tuberculosis. Compounds 2a and 3b displayed as strong inducers of apoptosis in A549 cells, both activating intrinsic caspase pathway and cell cycle arrest at the G0/G1 phase. Subsequent analyses disclosed differences in their activities, where 3b has ability to induce production of mitochondrial superoxide anions, while 2a significantly inhibited cellular mobility. More importantly, 3b considerably affected viability of HepG-2 and HaCaT cells, whereas 2a had moderate impact only on the later. Molecular modeling studies indicated high permeability and good absorption through the human intestine, and moderate aqueous solubility with poor blood–brain barrier permeability. In summary, our results reveal that novel compounds 3 and 2a represent promising agents for tuberculosis and cancer treatment, respectively, indicating that further investigation needs to be performed to clarify the mechanisms of their anti-Mtb and anticancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号