首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shen GY  Wang H  Deng T  Shen GL  Yu RQ 《Talanta》2005,67(1):217-220
A simple, rapid, and highly sensitive immunosensor for the direct determination of carcinoembryonic antigen (CEA) in human serum using a piezoelectric crystal has been developed and optimized. In order to improve sensitivity of the immunosensor, a protein A-based orientation-controlled immobilization method for antibodies was adopted together with an immunoreactive accelerant of polyethyleneglycol (PEG) used to amplify the signal response of frequency. Human normal serum was utilized as a reference background. The linear range for CEA concentration obtained by the end-point method was 66.7-466.7 ng/mL. Clinical samples from cancer patients were analyzed by the proposed piezoelectric immunoassay, and the analytical results were reasonably comparable with those obtained by the chemiluminescence immunoassay (CLIA). The proposed immunosensor provides a new promising method for the highly sensitive immunoassay of CEA in clinical laboratory.  相似文献   

2.
Nanoporous gold (NPG) has recently received considerable attention in analytical electrochemistry because of its good conductivity and large specific surface area. A facile layer-by-layer assembly technique fabricated NPG was used to construct an electrochemical immunosensor for carcinoembryonic antigen (CEA). NPG was fabricated on glassy carbon (GC) electrode by alternatively assembling gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using 1,4-benzenedimethanethiol as a cross-linker, and then AgNPs were dissolved with HNO3. The thionine was absorbed into the NPG and then gold nanostructure was electrodeposited on the surface through the electrochemical reduction of gold chloride tetrahydrate (HAuCl4). The anti-CEA was directly adsorbed on gold nanostructure fixed on the GC electrode. The linear range of the immunosensor was from 10 pg mL−1 to 100 ng mL−1 with a detection limit of 3 pg mL−1 (S/N = 3). The proposed immunosensor has high sensitivity, wide linear range, low detection limit, and good selectivity. The present method could be widely applied to construct other immunosensors.  相似文献   

3.
A magnetocontrolled immunosensing strategy based on flow-injection electrochemical impedance spectroscopy (EIS) was developed for the determination of carcinoembryonic antigen (CEA) in human serum. The immunosensor was fabricated by immobilizing anti-CEA on epoxysilane-modified core–shell magnetic Fe3O4/SiO2 nanoparticles. The detection principle is based on the difference between the resistances measured before and after the antigen–antibody interaction. The performance of the immunosensor and factors influencing this performance were also proposed. The resistance response depended linearly on the CEA concentration over the range 1.5–60 ng/ml, and the immunosensor gave a detection limit of 0.5 ng/ml (S/N = 3). Coefficients of variance (CVs) of <9.8% were obtained for the intra- and interassay precisions. The method was successfully applied to the analysis of CEA in human serum. The recoveries obtained by spiking CEA standards into normal serum were 87–113%. The performance of the immunosensor was compared with a commercially available CEA ELISA. Satisfactory results were obtained according to a paired t-test method (t value < t critical at the 95% confidence level). Importantly, the proposed immobilization protocol could be further developed to immobilize other antigens or biocompounds. Figure This study introduced a magnetocontrolled electrochemical immunosensing strategy based on antibody-functionalized magnetic core–shell Fe3O4/SiO2 nanoparticles for the determination of carcinoembryonic antigen in human serum  相似文献   

4.
In this work, we reported a sandwiched luminol electrochemiluminescence (ECL) immunosensor using ZnO nanoparticles (ZnONPs) and glucose oxidase (GOD) decorated graphene as labels and in situ generated hydrogen peroxide as coreactant. In order to construct the base of the immunosensor, a hybrid architecture of Au nanoparticles and graphene by reduction of HAuCl4 and graphene oxide (GO) with ascorbic acid was prepared. The resulted hybrid architecture modified electrode provided an excellent platform for immobilization of antibody with good bioactivity and stability. Then, ZnONPs and GOD functionalized graphene labeled secondary antibody was designed for fabricating a novel sandwiched ECL immunosensor. Enhanced sensitivity was obtained by in situ generating hydrogen peroxide with glucose oxidase and the catalysis of ZnONPs to the ECL reaction of luminol–H2O2 system. The as-prepared ECL immunosensor exhibited excellent analytical property for the detection of carcinoembryonic antigen (CEA) in the range from 10 pg mL−1 to 80 ng mL−1 and with a detection limit of 3.3 pg mL−1 (S N−1 = 3). The amplification strategy performed good promise for clinical application of screening of cancer biomarkers.  相似文献   

5.
吴柯  章竹君 《分析试验室》2008,27(3):102-105
设计了一种测定人血清中癌胚抗原的毛细管电泳-化学发光检测均相免疫分析新方法。采用四苯硼酸钠增强luminol-H2O2-HRP体系化学发光的原理,化学发光检测经毛细管电泳分离的,用辣根过氧化物酶(HRP)标记的癌胚抗体及免疫复合物。测定癌胚抗原的线性范围2.0~80.0μg/L(R=0.9921),检出限为0.1μg/L(绝对检出限为0.75 fg)。  相似文献   

6.
电化学发光(ECL)兼备电化学和化学发光的特点,灵敏度高、线性范围宽、背景干扰小,得到了广大分析科学研究者的关注;传统的ECL材料虽然发光效率高,但仍存在价格昂贵、负载量低等缺点。g-C3N4是一种不含金属的半导体纳米材料,主要以三嗪环或七嗪环为基本结构单元,通过层间的范德华力以及层内的C—N共价键结合,构成类石墨的二维层状结构,具有性质稳定、能带结构独特、生物兼容性好、环保无毒、易于功能化、原料价廉、制备过程简单等优点。自2012年g-C3N4首次被发现具备ECL的性能,至今已被广泛应用到ECL中。本文根据ECL的发光机理、传感器的作用效果、传感的信号类型以及不同的检测对象进行了分类,综述了近年来g-C3N4在ECL传感器构建中的研究进展,并阐述了g-C3N4在ECL发展中存在的挑战和前景。  相似文献   

7.
癌胚抗原毛细管电泳-化学发光均相免疫分析   总被引:1,自引:0,他引:1  
建立了一种测定人血清中癌胚抗原的毛细管电泳-化学发光检测的均相免疫分析新方法.采用四苯硼钠增强luminol-H2 O2-HRP体系化学发光的原理,化学发光检测经毛细管电泳分离的,用辣根过氧化物酶(HRP)标记的癌胚抗体及免疫复合物.测定癌胚抗原的线性范围2.0~80.0 μg/L(R=0.9921),检出限为0.1 μg/L(绝对检出限为0.75 fg).  相似文献   

8.
As a kind of glycoprotein, carcinoembryonic antigen (CEA) is the important tumor marker for clinical diagnosis of the presence or recurrence of cancer. In this work, a novel label-free resonance light scattering (RLS) spectral CEA assay was developed based on the combination of highly selective immunoreaction and ultrasensitive RLS technique. In Tris–HCl buffer solution (pH 7.5), the specific immunoreaction between CEA antigen and mouse anti-CEA formed immune complexes which had a maximum RLS spectral peak at 389.0 nm, with the existence of physiological saline and polyethylene glycol 20,000 (PEG 20,000). Under the optimal conditions, the magnitude of enhanced RLS intensity (ΔIRLS) was proportional to the concentration of CEA in the range from 0.1 to 60 ng mL−1, with a detection limit (LOD, 3σ) of 0.03 ng mL−1. The characteristics of RLS, the CEA immunocomplex, the immune response, the ratio of CEA antigen and mouse anti-CEA, and the optimum conditions of the immunoreaction have been investigated. The CEA concentrations of 20 serum specimens detected by the developed assay showed consistent results in comparison with those obtained by commercially available enzyme-linked immunosorbent assay (ELISA) kit. And this method has many satisfying merits including label-free, sensitivity and high selectivity.  相似文献   

9.
A novel gold-label silver-stain electrochemical immunosensor based on polythionine-gold nanoparticles (PTh-Au NPs) modified glassy carbon electrode (GCE) as a platform and secondary antibody labeled Au NPs (Ab2-Au NPs) as immumoprobe for carcinoembryonic antigen (CEA) detection. The sandwich-type biosensor adopted anodic stripping voltammetry to detect silver stripping signal when the Ab2-Au NPs of the formed immunocomplexes were stained with silver.  相似文献   

10.
Carcinoembryonic antigen (CEA) is a wide‐spectrum biomarker. Clinically, we generally use serum sample to detect CEA, which needs to be centrifuged to pretreat the raw blood sample. In this study, we realized direct CEA detection in raw blood samples exploiting microfluidics. The LOD was as low as 10?12 M.  相似文献   

11.
Three-dimensional macroporous gold nanoparticles/graphene composites (3D-AuNPs/GN) were synthesized through a simple two-step process, and were used to modify working electrode sensing platform, based on which a facile electrochemical immunoassay for sensitive detection of carcinoembryonic antigen (CEA) in human serum was developed. In the proposed 3D-AuNPs/GN, AuNPs were distributed not just on the surface, but also on the inside of graphene. And this distribution property increased the area of sensing surface, resulting in capturing more primary antibodies as well as improving the electronic transmission rate. In the presence of CEA, a sandwich-type immune composite was formed on the sensing platform, and the horseradish peroxidase-labeled anti-CEA antibody (HRP-Ab2)/thionine/nanoporous silver (HRP-Ab2/TH/NPS) signal label was captured. Under optimal conditions, the electrochemical immunosensor exhibited excellent analytical performance: the detection range of CEA is from 0.001 to 10 ng mL−1 with low detection limit of 0.35 pg mL−1 and low limit of quantitation (LOQ) of 0.85 pg mL−1. The electrochemical immunosensor showed good precision, acceptable stability and reproducibility, and could be used for the detection of CEA in real samples. The proposed method provides a promising platform of clinical immunoassay for other biomolecules  相似文献   

12.
采用毛细管电泳免疫分析法研究癌胚抗原和抗体相互作用.探讨了缓冲体系、癌胚抗原和抗体的配比、进样时间,进样电压等因素对分离检测的影响.结果表明分离电压为14 kV,进样时间为10 s, 在pH值为5.92的Tris-乙酸缓冲体系(TAE)中, 癌胚抗原及其复合物得到较满意的分离.  相似文献   

13.
Kong FY  Xu MT  Xu JJ  Chen HY 《Talanta》2011,85(5):2620-2625
In this paper, gold nanoparticle-thionine-reduced graphene oxide (GNP-THi-GR) nanocomposites were prepared to design a label-free immunosensor for the sensitive detection of carcinoembryonic antigen (CEA). The nanocomposites with good biocompatibility, excellent redox electrochemical activity and large surface area were coated onto the glassy carbon electrode (GCE) surface and then CEA antibody (anti-CEA) was immobilized on the electrode to construct the immunosensor. The morphologies and electrochemistry of the formed nanocomposites were investigated by using scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrometry, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). CV and differential pulse voltammetry (DPV) studies demonstrated that the formation of antibody-antigen complexes decreased the peak current of THi in the GNP-THi-GR nanocomposites. The decreased currents were proportional to the CEA concentration in the range of 10-500 pg/mL with a detection limit of 4 pg/mL. The proposed method was simple, fast and inexpensive for the determination of CEA at very low levels.  相似文献   

14.
To detect a biomarker for lung cancer, carcinoembryonic antigen (CEA), a highly sensitive, selective, rapid and portable immunosensor based on immunomagnetic separation and chemiluminescence immunoassay was introduced. A sandwich scheme assay has been utilized with horseradish peroxidase (HRP) labeled anti-CEA antibody and immunomagnetic beads (IMBs). The presence of target protein CEA caused the formation of the sandwich structures (IMBs-CEA-HRP labeled antibody). IMBs were applied to capture CEA and immobilize CEA through the external magnetic field. The HRP at the surface of the antibody catalytically oxidized the luminescence substrate to generate optical signals which were detected by a portable home-made luminometer and which were directly proportional to the concentration of CEA in the samples. The signals were dependent on CEA concentrations in a linear range from 0 to 50 ng mL−1. The limit of detection (LOD) of this method was as low as 5.0 pg mL−1 (S/N = 3). The novel immunosensor was highly sensitive with an assay time of <35 min. The intra- and inter-assay coefficients of variation were <10%. The anti-CEA antibody can be bound to the bead efficiently with a conjugation rate of 73%. IMBs could be stored in 4 °C protecting from light for 2 months without obvious reduction of biological activity. Human reference sera mixed with various concentrations of CEA were tested with the proposed method and commercial enzyme-linked immunosorbent assay (ELISA) kit, and a good linear relationship was obtained. This proposed technique demonstrated an excellent performance for quantifying CEA and was expected to be used for clinical testing.  相似文献   

15.
A quick and reproducible electrochemical-based immunosensor technique, using magnetic core/shell particles that are coated with self-assembled multilayer of nanogold, has been developed. Magnetic particles that are structured from Au/Fe3O4 core-shells were prepared and aminated after a reaction between gold and thiourea, and additional multilayered coatings of gold nanoparticles were assembled on the surface of the core/shell particles. The carcinoembryonic antibody (anti-CEA) was immobilized on the modified magnetic particles, which were then attached on the surface of solid paraffin carbon paste electrode (SPCE) by an external magnetic field. This is an assembly of a novel immuno biosensor for carcinoembryonic antigen (CEA). The sensitivity and response features of this immunoassay are significantly affected by the surface area and the biological compatibility of the multilayered nanogold. The linear range for the detection of CEA was from 0.005 to 50 ng mL−1 and the limit of detection (LOD) was 0.001 ng mL−1. The LOD is approximately 500 times more sensitive than that of the traditional enzyme-linked immunosorbent assay for CEA detection.  相似文献   

16.
The excellent direct electron transfer (DET) of enzyme labeled to antibody immobilized in designer organically modified silicate (ormosil) sol–gel was achieved at an electrode, which was used to construct a novel reagentless immunosensor for antigen determination. The synthesized ormosil architecture provided a hydrophilic interface for retaining the activity of immobilized enzyme labeled immunocomponent. The proposed immunosensor for carcinoembryonic antigen (CEA) prepared by immobilizing horseradish peroxidase-labeled CEA antibody (HRP-anti-CEA) in the architecture showed a surface-controlled electrode process attributed to the DET between electrode and HRP with a rate constant of 5.94 ± 0.40 s−1. The formation of immunocomplex upon incubation in CEA or sample solution led to block of DET and linearly decrease in voltammetric response over CEA concentration ranging from 0.5 to 3.0 and 3.0 to 120 ng ml−1. The limit of detection for CEA was 0.4 ng ml−1. The immunosensor showed good accuracy and acceptable storage stability, precision and reproducibility. The proposed method was simple, low-cost and potentially attractive for clinical immunoassays.  相似文献   

17.
A novel immunoassay for the determination of tumor markers in human serum was established by combining a time-resolved fluoroimmunoassay (TRFIA) and immunomagnetic separation. Based on a sandwich-type immunoassay format, analytes in samples were captured by magnetic beads coated with one monoclonal antibody and “sandwiched” by another monoclonal antibody labeled with europium chelates. The immunocomplex was separated and washed by exposure to a magnetic field and treatment with enhancement solution; fluorescence was then measured according to the number of europium ions dissociated. Levels of the model analyte, carcinoembryonic antigen (CEA), were determined in a linear range (1–1000 ng mL−1) with a limit of detection of 0.5 ng mL−1 under optimal conditions. The reproducibility, recovery, and specificity of the immunoassay were demonstrated to be acceptable. To evaluate this novel assay for clinical applications, 239 serum samples were evaluated. Compared with the conventional TRFIA and chemiluminescence immunoassay (CLIA), the correlation coefficients of the developed immunoassay were 0.985 and 0.975, respectively. These results showed good correlation and confirmed that our method is feasible and could be used for the clinical determination of CEA (or other tumor antigens) in human serum.  相似文献   

18.
A micro-magnetic chemiluminescence (CL) enzyme immunoassay with high sensitivity, selectivity, and reproducibility was developed for the determination of the tumor marker, carcinoembryonic antigen (CEA) in human serum. A sandwich scheme assay has been utilized with fluorescein isothiocyanate antibody (FITC)-labeled anti-CEA antibody and alkaline phosphate (ALP)-labeled anti-CEA antibody being used in the CL detection. The CL signal produced by the emission of photons from 4-methoxy-4-(3-phosphate-phenyl)-spiro-(1,2-dioxetane-3,2′-adamantane) (AMPPD) was directly proportional to the amount of analyte present in a sample solution. The influences of the reaction time of antigen with antibody, the reaction time of substrate with label, the dilution ratio of ALP-labeled anti-CEA antibody, the concentration of FITC-labeled anti-CEA antibody, and other relevant variables upon the CL signal were examined and optimized. The CL responses depended linearly on the CEA concentration over the range from 2 to 162 ng mL−1 in a logarithmic plot. Assay sensitivity as low as 0.69 ng mL−1 was achieved. A coefficient of variance of less than 13% was obtained for intra- and inter-assay precision. This method has been successfully applied to the analysis of CEA in human serum. According to the procedure based on spiked standards, the recoveries obtained were 80–110%. Comparison experiments were carried out with the commercially available CEA chemiluminescence immunoassay. Satisfactory results were obtained according to a paired t-test method (t value < t critical at the 95% confidence level).  相似文献   

19.
A simple and sensitive electrochemical immunoassay protocol was developed for the detection of carcinoembryonic antigen (CEA) using nanosilver-doped DNA polyion complex membrane (PIC) as sensing interface. To construct such an immunosensor, double-stranded DNA was initially assembled onto the surface of thionine/Nafion-modified screen-printed carbon electrode to adsorb silver ions with positive charges, then silver ions were reduced to nanosilver particles with the aid of NaBH4, and then anti-CEA antibodies were immobilized on the nanosilver surface. Gold nanoparticles conjugated with horseradish peroxidase-labeled anti-CEA were employed as signal antibodies for the detection of CEA with a sandwich-type assay format. Under optimal conditions, the immunosensor exhibited a dynamic range of 0.03-32 ng mL−1 with a low detection limit of 10 pg mL−1 CEA. Intra- and inter-assay imprecision (CVs) were <9.5% and 6.5%, respectively. The response could remain 90.1% of the original current at 30th day. 50 real samples were evaluated using the immunosensor and the enzyme-linked immunosorbent assay, respectively, and received in accordance with those two methods.  相似文献   

20.
Herein, a signal‐on sandwich‐type electrochemiluminescence (ECL) aptasensor for the detection of thrombin (TB) was proposed. The graphene (GR) doped thionine (TH) was electropolymerized synchronously on the bare glassy carbon electrode (GCE) to form co‐polymer (PTG) electrode. The gold nanoparticles (AuNPs) were decorated on the surface of the PTG by in‐situ electrodeposition, and the functional co‐polymer (PTG‐AuNPs) electrode was utilized as sensing interface. Then, TB binding aptamer I (TBA I) as capture probes were modified on the PTG‐AuNPs electrode to capture TB, and Ru(bpy)32+/silver nanoparticles doped silica core‐shell nanocomposites‐labeled TB binding aptamer II (RuAg/SiO2NPs@TBA II) were used as signal probes to further bind TB, resulting in a sandwich structure. With the assistant of silica shell and AgNPs, the enrichment and luminous efficiency of Ru(bpy)32+ were significantly improved. Under the synergy of PTG‐AuNPs and RuAg/SiO2NPs, the ECL signal was dramatically increased. The proposed ECL aptasensor displayed a wide linear range from 2 fM to 2 pM with the detection limit of 1 fM, which is comparable or better than that in reported ECL aptasensors for TB using Ru(bpy)32+ and its derivatives as the luminescent substance. The excellent sensitivity makes the proposed aptasensor a promising potential in pharmaceutical and clinical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号