首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitellaria paradoxa Gaertn. is a multipurpose medicinal plant of the family Sapotaceae, and it has been widely used usually in the clinical traditional medicine as remedy for a wide range of diseases for several decades. In addition, the plant has also found applications in confectionery, cosmetics and soaps, and pharmaceuticals both locally and internationally. V. paradoxa, which has been identified with >150 phytoconstituents, is rich in oleanane-type triterpene acids and glycosides, such as paradoxosides A-E, tieghemelin A, parkiosides A-C, bassic acid, as well as flavonoids such as quercetin and catechin-type compounds. The extracts and the active constituents of V. paradoxa have been investigated for various pharmacological activities, including but not limited to anticancer, melanogenesis-inhibitory, antibacterial, anti-diabetic, antioxidant, anti-inflammatory, anti-diarrhoeal, and antifungal activities. Additionally, V. paradoxa has also been utilized in nanoparticles (NPs) synthesis. These NPs among other things have shown significant antinociceptive and antiedematogenic activities as well as environmental friendly adsorptive properties for the removal of pollutants from pharmaceutical effluents. Overall, this review comprehensively examines the traditional uses, phytochemistry, pharmacology, toxicology, clinical studies, and nanoparticles synthesized from V. paradoxa and their applications.  相似文献   

2.
Natural product screening in plants has always been a difficult task due to the complex nature of the plant material and diverse structures of the compounds present in them. Flavonoids are important and diverse class of plant secondary metabolites with numerous medicinal activities. The present study focuses on the development of a high-resolution tandem mass spectral library for the rapid and authentic identification of common flavonoids. A total of forty flavonoid standards belong to class flavones, isoflavones, flavanones, flavanols and anthocyanins were pooled into two solutions applying logP-based strategy. The flavonoids were analyzed using LC-QTOF-MS high-resolution mass spectrometer with optimization of different instrumental parameters to achieve good sensitivity. The library was built by incorporating names, molecular formulae, exact masses, and MS, and MS/MS spectra of analyzed flavonoids using Bruker Library Editor tool. The fragmentation pattern observed for the standard compounds were compared to the fragments reported in the literature. To assess the practical implications, an extract of tea sample was analyzed and screened using the developed library, which resulted in the identification of three common flavonoids based on their HR-ESI-MS/MS spectral features. The established LC-HR-MS/MS method can be used for the targeted identification of flavonoids in complex samples like food material from different botanical families.  相似文献   

3.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

4.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   

5.
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation.  相似文献   

6.
CO2 reduction processes continue to be developed for electrosynthesis, energy storage applications, and environmental remediation. A number of promising materials have shown high activity and selectivity to target reduction products. However, the progress has been mainly at a small laboratory scale, and the technical challenges of large scale CO2 reduction have not been considered adequately. This review covers recent advancements in catalyst materials and cell designs. The leading materials for CO2 reduction to a number of useful products are presented with their corresponding cell and reactor designs. The latest efforts to progress to industrially relevant scales are discussed, along with the challenges that must be met for carbon dioxide reduction to be a viable route for mass scale production.  相似文献   

7.
Cryptosporidiosis is a global zoonotic infection that causes water-borne epidemics of diarrhea. Nevertheless, there are few available therapies for cryptosporidiosis. However, the gold standard drug nitazoxanide (NTZ) has limited efficacy in malnourished and immunocompromised patients. Furthermore, Verbena officinalisL. is a herbal plant widely used in traditional medicine to cure several health disorders and is recognized to possess numerous therapeutic applications. In the present study, the phytochemical composition of aerial part extract from Verbena officinalis was investigated via LC-ESI-MS/MS.Furthermore, the anti-cryptosporidial activity was also performed using an animal model. Fifty mice were divided into 5 groups; GI: non-infected (Negative control), GII: infected non treated (positive control), GIII: infected, treated with NTZ, GIV: infected, treated with V. officinalis n-butanol extract, GV: infected, treated with a combination of NTZ and V. officinalis. Parasitological examination revealed a highly significant difference (P-value < 0.001) between GIII, GIV, and GV compared to GII regarding the mean number of Cryptosporidium spp. oocyst in the stool. Moreover, GV showed the best efficacy with a percentage of 87%. Also, histopathological examination showed variable degrees of improvement in the villous broadening, and the inflammatory infiltrates in the small intestine with a reduction of hepatocyte degeneration and mononuclear infiltration in GIII, GIV, and GV compared to GII, with the best results seen in GV. Additionally, the chemical profiling of n-butanol extract identified 16 secondary metabolites comprising flavonoids, phenolic acids, phenylethanoids, and coumarins. In conclusion, V. officinalis is an intrinsic supplier of biologically active metabolites with outstanding anti-parasitic and possible anti-inflammatory effects.  相似文献   

8.
Fructus Corni (FC), as a promising Chinese medicinal herb, has aroused considerable interest. Generally, FC needs to be processed according to the limited standard policy in China before clinical application, while the investigations on the specific processing methods (such as wine steaming or high-pressure wine steaming) are unclear. A comprehensive metabolomics strategy based on integrated non-targeted metabolomics and targeted glycomics in this paper was implemented to investigate the influences of the different processing technologies such as steaming, wine steaming, high-pressure steaming, high-pressure wine steaming, wine immersion, and wine stir-frying on FC, respectively. UHPLC-Q-TOF-MS/MS was employed for identifying and distinguishing the secondary metabolites. A total of 85 components were identified in all groups. The results of PCA score plots showed that the crude and processed samples had a complete separation, and wine steamed and high-pressure wine steamed samples could be a category, indicating that the two processed products had a similar quality. Multiple chromatography including HPLC (C18)-PDA, HPLC (NH2)-ELSD, and HPGPC-ELSD was used for determining the molecular weight distributions, the monosaccharide compositions of polysaccharides, and the contents of free monosaccharides and oligosaccharides. The results indicated that the content and composition of saccharides were different in crude and different processed FC. The polysaccharides were composed of fucose, arabinose, galactose, glucose, galacturonic acid, mannose and rhamnose, and the free monosaccharides were composed of fucose, arabinose, galactose, glucose, mannose, rhamnose and fructose in all FC samples. The PCA score plots of the glycomics indicated that the crude and high-pressure wine steamed FC could be a category, showing that the two groups had similar chemical compositions. Ultimately, the simulation processing experiments indicated that the transformation of morroniside, polysaccharides, oligosaccharides, fructose, and glucose to 5-HMF through the reactions of dehydration and deglycosylation was the potential mechanism of enhancing the effects by processing. Conclusionly, the saccharides should be investigated as thoroughly as the secondary metabolites, and the high-pressure wine steamed FC could be an alternative to wine steamed FC.  相似文献   

9.
The water-soluble polysaccharides from plants have attracted ever-increasing attention in the field of food and drug due to their various activities and low toxicity. CBP50-1, as a purified fraction of polysaccharide from the rhizome of Cibotium barometz (CBP), mainly consisted of glucose (55.45%) and xylose (25.27%). CBP50-1 showed excellent antioxidant activity for scavenging 2,2?Diphenyl?1?picryl?hydrazy (DPPH) radical and hydroxyl radical, further inhibiting lipid peroxidation. CBP50-1 significantly improved the survival rate of Caenorhabditis elegans under thermal and oxidative stress. Furthermore, CBP50-1 reduced the paralysis and oxidative damage induced by amyloid-beta (Aβ) and increased the antioxidant enzyme activity in Alzheimer’s disease (AD) model C. elegans CL4176 through c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signal pathway. Thus, CBP50-1 had a potential application in health industries.  相似文献   

10.
The development of new products and technologies based on agro-industrial waste use has been caused by the dearth of raw materials linked to environmental factors. In this work, it was aimed at proving the potential of using Bagassa guianensis species forestry waste (MENDESS ROSS Ltda., located on Mucajaí – RR/Brazil) in obtaining bioactive compounds and the use of ethanolic extract as a bioproduct in combating oxidative stress. The chemical profile of ethyl acetate and ethanolic extracts, by HPLC, HPTLC and NMR, allowed to identify the presence of important phytochemical classes, such as fatty acids, stilbenes, moracins, flavanones and dihydroflavonols in both extracts, in addition to the identification of bioactive compounds of pharmacological and economic relevance, such as stilbenes trans-resveratrol, trans-oxyresveratrol, moracin M, moracin N and the aminosugar 1-deoxynojirimycin, their permanence in the raw material confirms the viability of using this waste even after industrial processing, which allows adding value to the species productive chain. The analysis of the antioxidant capacity showed an important action of ethanolic extract in the face of DPP? and ABT?+ radicals solutions, with IC50 23.71 and 5.79 µg/mL respectively, which suggests being related to its abundant phenolic composition, thus, indicating a possible bioproduct in the combat the effects caused by oxidative stress, in addition to its application in cosmetics, pharmaceuticals, stabilizing additives or even as a raw material for obtaining bioactive molecules in secondary processes.  相似文献   

11.
According to the Food and Agriculture Organization of the United Nations, approximately 1.3 billion tons of food is wasted each year, equivalent to approximately one-third of world production. Agri-food wastes are the source of proteins, carbohydrates, lipids, and other essential minerals that have been exploited for value-added products by the development of biorefineries and sustainable business as important elements of circular economies. The innovation and materialization of these types of processes, including the use of disruptive technologies on microbial bioconversion and enzyme technology, such as nanotechnology, metabolic engineering, and multi-omics platforms, increase the perspectives on the waste valorization process. Lignocellulolytic enzymes, pectinases, and proteases are mainly used as catalyzers on agri-food waste treatment, and their production in house might be the trend in near future for agro-industrial countries. Another way to transform the agri-food wastes is via aerobic or anaerobic microbial process from fungal or bacterial cultures; these processes are the key to produce waste enzymes.  相似文献   

12.
While the developments of additive manufacturing (AM) techniques have been remarkable thus far, they are still significantly limited by the range of printable, functional material systems that meet the requirements of a broad range of industries; including the health care, manufacturing, packaging, aerospace, and automotive industries. Furthermore, with the rising demand for sustainable developments, this review broadly gives the reader a good overview of existing AM techniques; with more focus on the extrusion-based technologies (fused deposition modeling and direct ink writing) due to their scalability, cost efficiency and wider range of material processability. It then goes on to identify the innovative materials and recent research activities that may support the sustainable development of extrusion-based techniques for functional and multifunctional (4D printing) part and product fabrication.  相似文献   

13.
IntroductionScientific evidence about biological profile of natural products can support their traditional uses. The current work was aimed to assess phytochemical and biological profile of nine medicinal plants collected from Herbalists.MethodsExtracts prepared in different solvents were subjected to phytochemical, antioxidant, enzyme inhibitory, cytotoxic, and antimicrobial activities. Reverse phase-high performance liquid chromatography (RP-HPLC) analysis was performed for the quantification of polyphenols.ResultsResults showed methanol extract (M) being potent as compared to others. Gentian lutea M showed maximum extract recovery (15.00 ± 0.11 % w/w) and TFC (30.82 ± 0.21 μg QE/mg extract). Nigella sativa M displayed highest TPC (44.99 ± 0.43 μg GAE/mg extract) and TAC (334.72 ± 0.35 μg AAE/ mg extract). Results showed noteworthy quantities of vanillic acid, rutin, kaempferol, emodin in ethyl acetate (EA) and methanol (M) extracts of plants assessed by RP-HPLC. Gentisic acid was highest (11.75 µg/mg extract) in T. arjuna M extract. Similarly, maximum %FRSA (82.28 ± 0.03 %) and TRP (160.40 ± 0.38 μg AAE/ mg extract) were depicted by Terminalia chebula and Chamomilla recutita, respectively. Moreover, Mentha longifolia and G. lutea M demonstrated noteworthy (p < 0.05) antibacterial activity against Staphylococcus aureus (14 ± 0.7 mm) and Klebsiella pneumoniae (12 ± 0.3 mm), respectively. Curcuma amada, C. recutita, Murraya koenigii and G. lutea M had significant α-glucosidase activity. Another good solvent for extraction was ethyl acetate (EA), whose extracts were secondary to methanol in producing significant biological profile. For example, EA of N. sativa (TPC: 1.46 ± 0.45 µg GAE/ mg extract), G. lutea (TRP: 160.33 ± 0.52 μg AAE/mg extract: ZOI of 12 ± 0.5 mm in K. pneumoniae) and Mormodica charantia (α-amylase inhibition: 39.5 ± 0.10 %) showed significant bioactivities. All extracts displayed mild antifungal protein kinase inhibition activities and were significantly (greater than80 %: p < 0.05) cytotoxic to brine shrimps with negligible hemolytic activity.ConclusionBriefly, variable polarity solvent extracts of studied plants will be processed for isolation of antioxidant, cytotoxic, carbohydrate enzyme inhibitory and antibacterial compounds.  相似文献   

14.
Neomangiferin (NMF) is an extremely special xanthone that could be simultaneously attributed to C-glycoside and O-glycoside with a variety of biological activities, such as anti-inflammatory, antitumor, antipyretic, and so on. So far as we know, the metabolism profiling has been insufficient until now. Herein, Drug Metabolite Cluster Centers (DMCCs)-based Strategy has been developed to profile the NMF metabolites in vivo and in vitro. Firstly, the DMCCs was proposed depending on literature-related and preliminary analysis results. Secondly, the specific metabolic rule was implemented to screen the metabolites of candidate DMCCs from the acquired Ultra High Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS) data by extracted ion chromatography (EIC) method. Thirdly, candidate metabolites were accurately and tentatively identified according to the pyrolysis law of mass spectrometry, literature reports, comparison of reference substances, and especially the diagnostic product ions (DPIs) deduced preliminarily. Finally, network pharmacology was adopted to elucidate the anti-inflammatory action mechanism of NMF on the basis of DMCCs. As a result, 3 critical metabolites including NMF, Mangiferin (MF) and Norathyriol (NA) were proposed as DMCCs, and a total of 61 NMF metabolites (NMF included) were finally screened and characterized coupled with 3 different biological sample preparation methods including solid phase extraction (SPE), acetonitrile precipitation and methanol precipitation. Among them, 32 metabolites were discovered in rat urine, 30 in rat plasma, 12 in rat liver, 9 metabolites in liver microsomes and 8 in rat faeces, respectively. Our results also illustrated that NMF primarily underwent deglucosylation, glucuronidation, methylation, sulfation, dihydroxylation and their composite reactions in vivo and in vitro. Additionally, network pharmacology analysis based on DMCCs revealed 85 common targets of disease-metabolites, and the key targets were TNF, EGFR, ESR1, PTGS2, HIF1A, IL-2, PRKCA and PRKCB. They exerted anti-inflammatory effects mainly through the pathways of inflammatory response, calcium-dependent protein kinase C activity, nitrogen metabolism, pathways in cancer and so on. In general, our study constructed a novel strategy to comprehensive elucidate the biotransformation pathways of NMF in vivo and in vitro, and provided vital reference for further understanding its anti-inflammatory action mechanism. Moreover, the established strategy could be generalized to the metabolism and action mechanism study of other natural products.  相似文献   

15.
Electrochemical biosensors are used worldwide as analytical tools from laboratory applications to market products. The performance of electrochemical sensing can be boosted by adopting the microneedle (MN) geometry as an innovative configuration of standard electrodes. MNs can be miniaturized, easily functionalized, and properly designed for specific aim monitoring, but most of all, they allow a low invasive controlling tool for growth and for environment influence in plant and a painless door to human body fluids where target analytes can be detected, overcoming the natural barrier of the skin. In this review, the very recent developments in MN-based electrochemical biosensing published in the literature are summarized.  相似文献   

16.
Psidium guajava L., commonly known as guava is an important tropical food plant with diverse medicinal values. In traditional medicine, it is used in the treatment of various diseases such as diarrhoea, diabetes, rheumatism, ulcers, malaria, cough, and bacterial infections. The aim of this review is to provide up-to-date information on the ethnomedicinal uses, bioactive compounds, and pharmacological activities of P. guajava with greater emphasis on its therapeutic potentials. The bioactive constituents extracted from P. guajava include phytochemicals (gallic acid, casuariin, catechin, chlorogenic acid, rutin, vanillic acid, quercetin, syringic acid, kaempferol, apigenin, cinnamic acid, luteolin, quercetin-3-O-α-L-arabinopyranoside, morin, ellagic acid, guaijaverin, pedunculoside, asiastic acid, ursolic acid, oleanolic acid, methyl gallate and epicatechin) and essential oils (limonene, trans-caryophyllene, α-humulene, γ-muurolene, selinene, caryophyllene oxide, bisabolol, isocaryophyllene, δ-cadinene, α-copaene, α-cedrene, β-eudesmol, α-pinene, β-pinene, β-myrcene, linalool, α-terpineol and eucalyptol). In vitro and in vivo studies demonstrated that P. guajava possesses pharmacological activities such as antidiabetic, antidiarrhoeal, hepatoprotective, anticancer, antioxidant, anti-inflammatory, antiestrogenic, and antibacterial activities which support its traditional uses. The exhibited pharmacological activities reported may be attributed to the numerous bioactive compounds present in different parts of P. guajava. Based on the beneficial effects of P. guajava as well as its bioactive constituents, it can be exploited in the development of pharmaceutical products and functional foods. However, there is a need for comprehensive studies in clinical trials to establish the safe doses and efficacy of P. guajava for the treatment of several diseases.  相似文献   

17.
Quinoline analogs are an important class of N-based heterocyclic compounds, which have received extensive attention because of their use in medicinal chemistry and organic synthesis. Over the past few decades, several new scaffold-based functionalization synthesis strategies have been reported for quinolines. Quinoline derivatives have a wide range of biological activities, including anti-Alzheimer’s disease activity. Herein, we review research on quinoline and related analogs as anti-Alzheimer’s disease agents from 2001 to 2022 and particularly highlight the structure–activity relationships and molecular binding modes. This review provides information for the rational design of more effective and target-specific drugs for Alzheimer's disease.  相似文献   

18.
19.
Scutellariae Radix, the root of Scutellaria baicalensis Georgi, is widely applied in China for the treatment of fever, ulcer, bronchitis, hepatitis and inflammatory symptoms. Sctuellariae Amoenae Radix, the root of Scutellaria amoena C.H. Wright, is often prescribed as the substitute for Scutellariae Radix. Up to now, no attempt has been made to unveil and compare the localization of phytochemicals in Scutellariae Radix and its succedaneum. This investigation succeeded to look into the differential distribution of natural compounds in Scutellariae Radix and Scutellariae Amoenae Radix using microscopic mass spectrometry imaging. Compounds presenting different distribution modes in two kinds of roots were sorted out, then a quick method for the differentiation between Scutellariae Radix and Scutellariae Amoenae Radix was established. Accumulation sites of baicalein, baicalin, wogonin and wogonoside in Scutellariae Radix were also uncovered using microscopic mass spectrometry imaging. Moreover, the application of matrix assisted laser desorption ionization-quadrupole-time of flight mass spectrometry allowed the on-tissue dissociation of major flavonoids. Overall, the utilization of microscopic mass spectrometry imaging and matrix assisted laser desorption ionization-quadrupole-time of flight mass spectrometry provided a novel perspective for the discovery of natural compounds within medicinal plants.  相似文献   

20.
Hydrides have been used since a long time for solid-state hydrogen storage and electrochemical nickel-metal hydride batteries. Besides these applications, growing attention has been devoted to their development as anode materials, as well as solid electrolytes for Li-ion and other ion batteries. Herein, we review and summarize the recent advances of hydrides as negative electrodes for Ni-MH and A-ion batteries (A = Li, Na), and as electrolyte for all solid-state batteries (ASSB). Metallic hydrides such as intergrowth compounds are highlighted as the best compromise up to now for Ni-MH. Regarding anodes of Li-ion batteries, MgH2, especially its combination with TiH2, provides very promising results. Complex hydrides such as Li-borohydride and related closo-borates and monovalent carborate boron clusters appear to be very attractive as solid electrolytes for Li-based ASSB, whereas closo-hydroborate sodium salts and closo-carboborates are investigated for Na- and Mg-ASSB. Finally, further research directions are foreseen for hydrides in electrochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号