首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This study reports a new approach of preparation of carbon dots coated on aluminum oxide nanofibers (CDs/Al2O3NFs) nanocomposite and reusing the spent adsorbent of lead (Pb2+) ions loaded adsorbent (Pb2+-CDs/Al2O3NFs) nanocomposite for latent fingerprint detection (LFP) after removing Pb2+ ions from aqueous solution. CDs/Al2O3NFs nanocomposite was prepared by using CDs and Al2O3NFs with adsorption processes. The prepared nanocomposite was then characterized by using UV–visible spectroscopy (UV–visible), Fourier transforms infrared spectroscopy (FTIR), Fluorescence, X-ray diffraction pattern (XRD), scanning electron microscope (SEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Zeta potential, X-ray photoelectron spectroscopy (XPS). The average size of the CDs was 51.18 nm. The synthesized CDs/Al2O3NFs nanocomposite has proven to be a good adsorbent for Pb2+ ions removal from water with optimum pH 6, dosage 0. 2 g/L. The results were best described by the Freundlich Isotherm model. The adsorption capacity of CDs/Al2O3NFs nanocomposite showed the best removal of Pb2+ ions with qm = (177. 83 mg/g), when compared to the previous reports. This adsorption followed the pseudo-second order kinetic model. ΔG and ΔH values indicated spontaneity and the endothermic nature of the adsorption process. CDs/Al2O3NFs nanocomposite therefore showed potential as an effective adsorbent. The data were observed from adsorption–desorption after 6 cycles which showed good adsorption stability and re- usability of CDs/Al2O3NFs nanocomposite. Furthermore, the spent adsorbent of Pb2+-CDs/Al2O3NFs nanocomposite has proven to be sensitive and selective for LFP detection on various porous substrates. Hence Pb2+-CDs/Al2O3NFs nanocomposite can be reused as a good fingerprint labelling agent in LFP detection so as to avoid secondary environmental pollution by disposal of the spent adsorbent.  相似文献   

2.
Kaolinite clay obtained from Ubulu-Ukwu, Delta state in Nigeria was modified with polyvinyl alcohol (PVA) reagent to obtain PVA-modified Kaolinite clay adsorbent. Scanning Electron Microscopy (SEM) of the PVA-modified adsorbent suggests that Kaolinite clay particles were made more compact in nature with no definite structure. Modification of Kaolinite clay with PVA increased its adsorption capacity for 300 mg/L Pb2+ and Cd2+ by a factor of at least 6, i.e., from 4.5 mg/g to 36.23 mg/g and from 4.38 mg/g to 29.85 mg/g, respectively, at 298 K. Binary mixtures of Pb2+ and Cd2+ decreased the adsorption capacity of Unmodified Kaolinite clay for Pb2+ by 26.3% and for Cd2+ by 0.07%, respectively. In contrast, for PVA-modified Kaolinite clay, the reductions were up to 50.9% and 58.5% for Pb2+ and Cd2+, respectively. The adsorption data of Pb2+ and Cd2+ onto both Unmodified and PVA-modified Kaolinite clay adsorbents were found to fit the Pseudo-Second Order Kinetic model (PSOM), indicating that adsorption on both surfaces was mainly by chemisorption and is concentration dependent. However, kinetic adsorption data from both adsorbent generally failed the Pseudo-First order Kinetic model (PFOM) test. Extents of desorption of 91% Pb2+ and 94% Cd2+ were obtained, using 0.1 M HCl, for the Unmodified Kaolinite clay adsorbent. It was found that 99% Pb2+ and 97% Cd2+, were desorbed, for PVA-modified Kaolinite clay adsorbents within 3 min for 60 mg/L of the metal ions adsorbed by the adsorbents.  相似文献   

3.
《印度化学会志》2023,100(1):100872
In current investigation, we synthesized new Polyaniline-Averraoha Bilimbi Leaves Activated Carbon (PANI-ABLC) nanocomposites and utilized as cost effectual for the elimination of Cd2+ and Pb2+ ions from the wastewater. The synthesized nanocomposite was confirmed by Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray (EDX), Fourier Transform-Infrared (FT-IR) spectroscopy and X-Ray Diffraction (X-RD) techniques. A batch adsorption study carried in wastewater containing different concentrations of Cd2+ and Pb2+ ions in the temperature range of 303–343 K. The results show that, around 80% of Cd2+ and Pb2+ ions from the wastewater was successfully isolated by using PANI-ABLC nanocomposite. Attempts were made to fit adsorption to different isotherm models. The PANI-ABLC nanocomposite complied Langmuir adsorption model (R2 = 0.999) and pseudo-second order kinetics. Further, maximum adsorption efficiency observed at 0.5 g of Polyaniline-Averraoha bilimbi leaves activated carbon nanocomposites. AC- Impedance Spectroscopy (IS) technique shows that, Polyaniline-Averraoha Bilimbi Leaves Activated Carbon (PANI-ABLC) nanocomposite is suitable for removal of Cd2+ and Pb2+ ions from the wastewater. AC impedance spectroscopy technique study shows that, the process of adsorption was controlled by charge transfer process.  相似文献   

4.
Facile synthesis of two 2-anthracene ammonium-based magnetic ionic liquids (MILs), 2-anthracene ammonium tetrachloroferrate (III) ([2A-A]FeCl4) and 2-anthracene ammonium trichlorocobaltate (II) ([2A-A]CoCl3) was performed by protonation of 2-aminoanthracene, followed complexation with FeCl3/CoCl2. The MILs were tested in the adsorptive removal of Cd2+, As3+, Pb2+ and Cr3+ from water sources. Upon treatment with 10 mg dosage of MILs in 10 mL aqueous solution of 50 ppm each of Cd2+, As3+, Pb2+ and Cr3+, adsorption capacity (mg/g) in the range of 5.73–55.5 and 23.6–56.8 for [2A-A]FeCl4 and [2A-A]CoCl3 respectively were recorded. Thus, the optimization, kinetic and isotherms studies were conducted using the [2A-A]CoCl3 adsorbent. The [2A-A]CoCl3 was more effective in pH 7–9, and equilibrium adsorption was achieved after 60 min contact time. The adsorption process proceeded via the Pseudo-second order pathway and the Langmuir isotherm model is the best fit for the adsorption process (with qmax = 227 – 357 mg/g) of all the targeted metal ions. The [2A-A]CoCl3 adsorbent demonstrated practicality with large distribution and selectivity coefficients of the targeted ions, and up to six times regeneration.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(11):7695-7706
A batch adsorption experiments were carried out to study the role of nanoparticles and nanocomposite on removal of some heavy metals and fungicides from aqueous solution. Nano-Hydroxyapatite (n-HAP), Nano-Bentonite (n-Bo) and Bentonite-hydroxyapatite nanocomposite (B-HAP NC) evaluated for the removal of some heavy metals and fungicides. The nanoparticles and nanocomposite were characterized by TEM, SEM and AFM, X-ray powder diffraction (XRD) and BET surface area. The batch adsorption was done using nanoparticles with Pb2+ and Ni2+ as example of heavy metals with concentrations up to 25 mgL−1. Also, the adsorption experiment was conducted using nano-particles (n-HAP, n-Bo and B-HAP NC) with fungicides Stop Feng and Eurozole with concentrations 20 to 200 μg L−1. Langmuir and Freundlich isotherm equations were employed to study the adsorption. The adsorption kinetics were conducted metal ion (Pb2+ and Ni2+) with residence time. The results indicated the maximum adsorption capacity of Ni+2 was occurred on (n-HAP). While that maximum adsorption capacity of Pb2+ was occurred on (B-HAP NC). The rate of Ni+2 removal was found to be very rapid during the initial 60 min. The adsorption of Pb+2 by the n-HAP and (B-HAP NC) was a slow increase with time, it did not bring any remarkable effect. Also, the efficiency of adsorbent compounds used to remove the residue of fungicides Stop Feng and Eurozole shown the highest removal rates obtained with used nano-hydroxyapatite followed by bentonite-hydroxyapatitenanocomposite and nano-bentonite, respectively. The current results are very useful in the treatment of wastewater and the removal of heavy metals and fungicides, consequently making them suitable for agricultural purposes.  相似文献   

6.
The increased global concern on environmental protection has made researchers focus their attention on new and more efficient methods of pollutant removal. In this research, novel nanocomposite adsorbents,i.e., magnetic hydroxyapatite (Fe3O4@HA) and magnetic hydroxyapatite β‐cyclodextrin (Fe3O4@HA‐CD) were synthesized and used for heavy metal removal. The adsorbents were characterized by FTIR, XRD, TGA, VSM, and SEM. In order to investigate the effect of β‐cyclodextrin (β‐CD) removal efficiency, adsorption results of nine metal ions were compared for both adsorbents. β‐CD showed the most increasing effect for Cd2+ and Cu2+ removal, so these two ions were selected for further studies. The effect of diverse parameters including pH, contact time, initial metal ion concentration and adsorbent dosage on the adsorption process was discussed. The optimum pH was 6 and adsorption equilibrium was achieved after 1 hr. Adsorption kinetic data were well fitted by pseudo‐second‐order model proposing that metal ions were adsorbed via chemical reaction. Adsorption isotherm was best described by the Langmuir model, and maximum adsorption capacity for Cd2+ and Cu2+ was 100.00 and 66.66 (mg/g), respectively. Desorption experiment was also done, and the most efficient eluent used for desorption of metal ions was EDTA (0.001 M) with 91% and 88% of Cd2+ and Cu2+ release, respectively. Recyclability studies also showed a 19% decrease in the adsorption capacity of the adsorbent after five cycles of regeneration. Therefore, the synthesized adsorbents were recognized as potential candidates for heavy metal adsorption applications.  相似文献   

7.
Manganese is one of the heavy metals that is a major environmental concern when present in large amount. Manganese is discarded into water systems by numerous industries, including mining, batteries and electroplating etc. Pineapple leaves were applied as a biomass source to produce a magnetic hydrothermal treated hydochar nanocomposite; Fe3O4-HC. The BET surface area of Fe2O3-HC nanocomposite was 21.27 m2/g. Batch adsorption experiments revealed that the uptake of Mn2+ fit well in the pseudo second kinetics model, while the adsorption isotherm best fit the Freundlich model, with a maximum adsorption capacity of 2.99 mg/g at 25 °C and a pH of 5. The obtained thermodynamic parameters demonstrated that Mn2+ ion adsorption using the Fe2O3-HC nanocomposite was endothermic and nonspontaneous. Additionally, Fe2O3-HC nanocomposite demonstrated to be highly selective towards Mn2+ ions in the presence of other ions. The removal percentage of Mn2+ from a real water sample spiked with 50 mg/L Mn2+ was reported to be 53.2%. The spent adsorbent was then used to detect latent fingerprints, which revealed that Mn2+-Fe2O3-HC nanocomposite generated better and clear latent fingerprints than Fe2O3-HC nanocomposite.  相似文献   

8.
We report in the present study the in situ formation of magnetic nanoparticles (Fe3O4 or Fe) within porous N-doped carbon (Fe3O4/N@C) via simple impregnation, polymerization, and calcination sequentially. The synthesized nanocomposite structural properties were investigated using different techniques showing its good construction. The formed nanocomposite showed a saturation magnetization (Ms) of 23.0 emu g−1 due to the implanted magnetic nanoparticles and high surface area from the porous N-doped carbon. The nanocomposite was formed as graphite-type layers. The well-synthesized nanocomposite showed a high adsorption affinity toward Pb2+ toxic ions. The nanosorbent showed a maximum adsorption capacity of 250.0 mg/g toward the Pb2+ metallic ions at pH of 5.5, initial Pb2+ concentration of 180.0 mg/L, and room temperature. Due to its superparamagnetic characteristics, an external magnet was used for the fast separation of the nanocomposite. This enabled the study of the nanocomposite reusability toward Pb2+ ions, showing good chemical stability even after six cycles. Subsequently, Fe3O4/N@C nanocomposite was shown to have excellent efficiency for the removal of toxic Pb2+ ions from water.  相似文献   

9.
In recent decades, great progress has been made in the application of adsorption processes to mitigate water pollution by hazardous metals. However, developing a highly efficient adsorbent is essential if the adsorption process is to be successfully applied in practical applications. In this study, a CuMgAl-layered double hydroxides/montmorillonite nanocomposite (CuMgAl-LDH/MMt) was prepared, characterized, and then used as a novel adsorbent for adsorption of Cd2+ ions from wastewater. The effects of initial pH, adsorbent dosage, agitation speed, particle size, contact time, initial Cd2+ concentration, and temperature on the pollutant removal efficiency were analyzed. An isotherm model reading revealed that the results of the experimental work were a good fit with the Freundlich model. The maximum adsorption capacity was reached at 174.87 mg/g under optimal conditions (pH 5, dosage of 0.02 g/l, agitation speed of 150 rpm, and particle size of 87 μm) at 50 ppm after 120 min of adsorption time. Kinetic studies showed that pseudo-second-order models were best fitted to the adsorption data, indicating heterogeneous adsorption of Cd2+ ions onto multilayer CuMgAl-LDH/MMt sites, and that the adsorption process is primarily chemical adsorption. Thermodynamic parameters (ΔSo, ΔHo, and ΔGo) demonstrated that Cd2+ adsorption onto adsorbent was exothermic and spontaneous. Moreover, the synthesized adsorbent can be recovered after five consecutive cycles with a minimal reduction in the adsorption ability of 29.56 %. The study showed that specific heavy metals can be removed from aqueous solution by a newly prepared adsorbent due to its excellent morphology, high stability under a wide range of conditions, recyclability, and high adsorption capacity.  相似文献   

10.
In this study, optimum conditions for adsorption of heavy metals such as Cu2+, Cd2+ and Pb2+ onto a low-cost, magnetically modified-alkali conditioned anaerobically digested sludge (MADS) adsorbent were obtained. Response Surface Methodology (RSM) incorporating Central Composite Design (CCD) of experiments was applied to optimize four independent process variables. Statistical analysis was executed by ANOVA and the quadratic model developed had regression coefficients of 0.959, 0.957 and 0.95 for Cu2+, Cd2+ and Pb2+, respectively. The independent variables such as pH, time and initial concentration positively influenced adsorption capacity, qe, whereas the value of qe decreased with an increase in MADS dosage. Model validation experiments for optimization of adsorption process showed comparable results with predicted values. The adsorption capacity of MADS adsorbent at optimum conditions found through RSM analysis was 29.721 mg L?1, 28.551 mg L?1 and 28.601 mg L?1 for Cu2+, Cd2+ and Pb2+ respectively.  相似文献   

11.
Functionalized Polyvinyl alcohol/sodium alginate (PVA/SA) beads were synthesized via blending Polyvinyl alcohol (PVA) with sodium alginate (SA) and the glutaraldehyde was used as a cross-linking agent. The zeolite nanoparticles (Zeo NPs) incorporated PVA/SA resulting Zeo/PVA/SA nanocomposite (NC) beads were synthesized for removal of some heavy metal from wastewater. The synthesizes beads were characterized via Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), particle size analyzer (PSA), and scanning electron microscope (SEM). The adsorption kinetics of the selected metal ions onto Zeo/PVA/SA NC beads followed the pseudo-first-order model (PFO) and the adsorption isotherm model was well fitted by the Langmuir model. Moreover, the thermodynamic studies were also examined; the outcomes showed that the adsorption mechanisms of the selective metal ions were endothermic, the chemical in nature, spontaneous adsorption on the surface of the Zeo/PVA/SA NC beads. The removal efficiency using Zeo/PVA/SA NC modified beads reached maximum at the pH value of 6.0 for Pb2+, Cd2+, Sr2+, Cu2+, Zn2+, Ni2+, Mn2+ and Li2+ with 99.5, 99.2, 98.8, 97.2, 95.6, 93.1, 92.4 and 74.5%, respectively, while the highest removal are achieved at pH = 5 for Fe3+ and Al3+ with 96.5 and 94.9%, respectively and decreased at lower or higher pH values. The survival count (%) of the E. coli cells were 34% on the SA beads, 11% on the PVA/SA, and 1% on the Zeo/PVA/SA NC modified beads, after 120 min exposure at 25 °C. Reusability experimental displays that the synthesized beads preserved a significant decrease in the sorption capacity after 10 repeating cycles. The Zeo/PVA/SA NC beads were able to eliminate 60–99.8% of Al3+, Fe3+, Cr3+, Co2+, Cd2+, Zn2+, Mn2+, Ni2+, Cu2+, Li2+, Sr2+, Si2+, V2+, and Pb2+ ions from the natural wastewater samples collected from 10th Ramadan City, Cairo, Egypt.  相似文献   

12.
The aim of this study was to investigate the performance of monoliths composed of hydroxyethyl methacrylate (HEMA) to which N-methacryloyl-(L)-cysteine methyl ester (MAC) was polymerized for removal of heavy metal ions. Poly(HEMA-MAC) monolith was produced by bulk polymerization. Poly(HEMA-MAC) monolith was characterized by FTIR and scanning electron microscopy (SEM). The poly(HEMA-MAC) monolith with a swelling ratio of 89%, and containing 69.4 μmol MAC/g were used in the adsorption studies. Adsorption capacity of the monolith for the metal ions, i.e., Cu2+, Cd2+, Zn2+, Hg2+, and Pb2+ were investigated in aqueous media containing different amounts of the ions (10–750 mg/L) and at different pH values (3.0–7.0). The maximum adsorption capacities of the poly(HEMA-MAC) monolith were 68.2 mg/g for Zn2+, 129.2 mg/g for Cu2+, 245.8 mg/g for Pb2+, 270.2 mg/g for Hg2+, and 284.0 mg/g for Cd2+. pH significantly affected the adsorption capacity of MAC incorporated monolith. The competitive adsorption capacities were 587 μmol/g for Zn2+, 1646 μmol/g for Cu2+, 687 μmol/g for Pb2+, 929 μmol/g for Hg2+, and 1993 μmol/g for Cd2+. The chelating monolith exhibited the following metal ion affinity sequence on molar basis: Cd2+ > Cu2+ > Hg2+ > Pb2+ > Zn2+. The formation constants of MAC–metal ion complexes have been investigated applying the method of Ruzic. The calculated values of stability constants were 5.28 × 104 L/mol for Cd2+, 4.16 × 104 L/mol for Cu2+, 2.27 × 104 L/mol for Hg2+, 1.98 × 104 L/mol for Pb2+, and 1.25 × 104 L/mol for Zn2+. Stability constants were increased with increasing binding affinity. The chelating monoliths can be easily regenerated by 0.1 M HNO3 with higher effectiveness. These features make poly(HEMA-MAC) monolith a potential adsorbent for heavy metal removal.  相似文献   

13.
A new chitosan imprinting adsorbent using diatomite as core material was prepared by using the surface molecular imprinting technology with the Pb2+ as imprinted ion. The preparation process conditions of the surface molecular imprinting adsorbent were studied. The adsorbent was characterized by using Fourier transform infrared (FTIR) spectrum. FTIR spectrum indicated that it was cross-linked by epichlorohydrin. The new imprinting adsorbent could provide a higher adsorption capacity for Pb2+, which reached 139.6 mg/g increasing 32.3% compared with cross-linking chitosan adsorbent (the initial Pb2+ concentration of 600 mg/L). The adsorption velocity was quick and the equilibration time of the imprinting adsorbent for Pb2+ was 3 h that shortened about 40% compared with cross-linking chitosan adsorbent. It had a more wide pH range of 5–7 than that of cross-linking chitosan adsorbent. The new imprinting adsorbent can be reused for up to ten cycles without loss of adsorption capacity. In the kinetics and isotherm study, the pseudosecond order model and Langmuir model could represent the adsorption process.  相似文献   

14.
In this research, a novel magnetic mesoporous adsorbent with mixed phase of Fe2O3/Mn3O4 nanocomposite was prepared by a facile precipitating method and characterized extensively. The prepared nanocomposite was used as adsorbent for toxic methyl orange (MO) dye removal from aqua matrix considering its high surface area (178.27 m2/g) with high saturation magnetization (23.07 emu/g). Maximum dye adsorption occurs at solution pH 2.0 and the electrostatic attraction between anionic form of MO dye molecules and the positively charged nanocomposite surface is the main driving force behind this adsorption. Response surface methodology (RSM) was used for optimizing the process variables and maximum MO removal of 97.67% is obtained at optimum experimental condition with contact time, adsorbent dose and initial MO dye concentration of 45 min, 0.87 g/l and 116 mg/l, respectively. Artificial neural network (ANN) model with optimum topology of 3–5–1 was developed for predicting the MO removal (%), which has shown higher predictive ability than RSM model. Maximum adsorption capacity of this nanocomposite was found to be 322.58 mg/g from Langmuir isotherm model. Kinetic studies reveal the applicability of second‐order kinetic model with contribution of intra‐particle diffusion in this process.  相似文献   

15.
This research study aims to remove hazardous anionic azo dyes (Congo red (CR)) from aqueous solutions via a simple adsorption method using a poly(3-aminobenzoic acid/graphene oxide/cobalt ferrite) nanocomposite (P3ABA/GO/CoFe2O4) as a novel and low-cost nanoadsorbent, as synthesized by a simple and straightforward polymerization method. Typically, 3-aminobenzoic acid (3ABA), as monomer, was chemically polymerized with graphene oxide (GO) and cobalt ferrite (CoFe2O4) in an aqueous acidic medium containing an ammonium persulfate initiator. The adsorbent P3ABA/GO/CoFe2O4 nanocomposite was characterized using various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, energy-dispersive analysis by X-ray and Brunauer–Emmett–Teller, vibrating sample magnetometer, and zeta potential techniques. These techniques confirmed the interaction between the poly(3-aminobenzoic acid) with GO and CoFe2O4 due to the presence of π-π interactions, hydrogen bonding, and electrostatic forces. Herein, the removal efficiency of dye from aqueous solution by the adsorbent was studied according to several parameters such as the pH of the solution, dye concentration, dosage of adsorbent, contact time, and temperature. The adsorption of the dye was fitted using a Langmuir model (R2 between 0.9980 and 0.9995) at different temperatures, and a kinetic model that was pseudo-second order (R2 = between 0.9993 and 0.9929) at various initial concentrations of CR dye. In addition, the data revealed that the P3ABA/GO/CoFe2O4 nanocomposite exhibited a high adsorption capacity (153.92 mg/g) and removal for CR dye (98 %) at pH 5. Thermodynamic results showed the adsorption process was an endothermic and spontaneous reaction. It was found that, in terms of reusability, the P3ABA/GO/CoFe2O4 adsorbent can be used for up to six cycles. In this study, P3ABA/GO/CoFe2O4 nanocomposites were found to be low cost, and have an excellent removal capability and fast adsorption rate for CR from wastewater via a simple adsorption method. Moreover, this adsorbent nanocomposite could be simply separated from the resultant solution and recycled.  相似文献   

16.
Release of heavy metal onto the water and soil as a result of agricultural and industrial activities may pose a serious threat to the environment. In this study, the adsorption behavior of nano hydroxyapatite with respect to Pb2+, Cd2+ and Ni2+ has been studied in order to consider its application to purity metal finishing wastewater. The batch method has been employed, using metal concentrations in solution ranging from 100 to 400 mg/L. The uptake capacity and distribution coefficients (Kd) were determined for the adsorption system as a function of sorbate concentration. The Langmuir, Freundlich, and Dubinin–Kaganer–Radushkevich (DKR) isotherms applied for sorption studies showed that the amount of metal sorbed on nano hydroxyapatite. It was found that the adsorption phenomena depend on charge density and hydrated ion diameter. According to the equilibrium studies, the selectivity sequence can be given as Pb2+ > Cd2+ > Ni2+. These results show that nano hydroxyapatite holds great potential to remove cationic heavy metal species from industrial wastewater.  相似文献   

17.
Molybdenum disulfide (MoS2) has excellent trapping ability for lead ions whereas its micro-/nanoscale size has greatly impeded its practical applications in the flow-through systems. Herein, a millimeter-sized nanocomposite MoS2?001 was synthesized for Pb2+ removal by loading MoS2 nanosheets into a polystyrene cation exchanger D-001 by a facile hydrothermal method. The proposed structure and adsorption mechanism of MoS2?001 was confirmed by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis. The nanocomposite showed outstanding adsorption capacity and rapid adsorption kinetic for Pb2+ removal, and the adsorption behavior followed the Langmuir adsorption model and pseudo-first-model kinetic model. Pb2+ uptake by MoS2?001 still maintains a high level even in the presence of extremely highly competitive ions (Ca(II) and Mg(II)), suggesting its high selectivity for Pb2+ adsorption. Besides, the fixed-bed column experiments further certified that MoS2?001 is of great potential for Pb2+ removal from the wastewater in practical engineering applications. Even more gratifying is that the exhausted MoS2?001 can be regenerated by NaCl-EDTANa2 solution without any significant adsorption capacity loss. Consequently, all the results indicated that MoS2?001 is a promising candidate adsorbent for lead-containing wastewater treatment.  相似文献   

18.
In this work, we have used a polyaniline and cupric oxide-based nanocomposite material (PANI-CuO) for the adsorption of Pb2+, Cd2+, and Cr6+ ions from contaminated water. FTIR, FESEM, EDX and XRD methods were used in the characterisation of PANI-CuO. The maximum percentage removal of Pb2+, Cd2+, and Cr6+ ions was found to be 79.9%, 78.9% and 82.1% at 1 g of PANI-CuO for 100 mL of contaminated water. The suitability order of the isotherm model was observed as Langmuir > Freundlich > Elovich, whereas the pseudo first order model was best fitted as compared to the pseudo second order model. The rate constants were evaluated as 1.441, 1.801 and 1.661 g mg?1 min ?1, respectively. The values of ΔG0 were calculated to be ?287.4, ?849.6, and ?728.9 kJ mol?1 for Pb2+, Cd2+ and Cr6+ ions, respectively.  相似文献   

19.
Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.  相似文献   

20.
Aluminum oxide/polyaniline nanocomposite is prepared by a new and one‐pot method including in situ electrooxidation of aluminum and electropolymerization of aniline. The product has been characterized by elemental analysis, FT‐IR spectroscopy, X‐ray diffraction (XRD), Field Emission Scanning Electron Micrographs (FESEM), and Transmission Electron Micrographs (TEM) techniques. ICP‐OES was used for determination of aluminum in the prepared nanocomposite. A porous structure of the prepared composite has been shown by FESEM images. TEM of the product confirms the presence of exfoliated aluminum oxide nanofibers. The adsorption potentials of the prepared nanocomposite towards Cu2+, Pb2+, Zn2+, Cd2+, Ni2+ and Co2+ ions were evaluated in batch adsorption experiments. The results show that the adsorption efficiency is controlled by aqueous phase pH. The experimental data was well interpreted by considering the Langmuir model. The kinetics of the adsorption processes can be well interpreted by pseudo‐second‐order equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号