首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
In order to find a clean, efficient and sustainable new energy source that can replace fossil fuels, hydrogen energy is considered to be the most ideal choice. Electrocatalytic oxygen evolution plays a vital role in the development of hydrogen energy, promotes the research of new electrocatalysts, and is dedicated to find materials with high electrocatalytic efficiency. This article discusses in detail the major developments in OER electrocatalysts, including recently reported metal and non-metal based materials. Metal-based catalysts, although having the advantages of high catalytic activity, have disadvantages such as poor stability and low selectivity, which hinder the further application of such materials. Non-metallic based materials avoid such disadvantages and exhibit very substantial performance in overall water decomposition. This review provides useful knowledge of a well-designed OER electrocatalyst and a possible strategy for OER/HER dual-function catalytic performance for future development.  相似文献   

2.
A series of transition metal (II/III) complexes containing organometallic Schiff base ligand (H2L) had been synthesized and characterized by using elemental analysis (C, H, N, M), molar conductivity, IR, UV–Vis, 1H NMR and mass spectral analysis. Also, their TG and DTG behaviors were investigated. The ligand was prepared by condensation of 4-aminosalicylic acid with 2-acetylferrocene in 1:1 M ratio. The data of elemental analysis indicated that the prepared complexes were synthesized also in a 1:1 M ratio. The ligand behaved as neutral bidentate ligand that coordinated to metal ions through protonated O-phenolic and protonated carboxylic-OH groups. All complexes had octahedral structure. DFT calculations for H2L ligand were determined with some parameters such as HOMO-LUMO energy gab, electronegativity and chemical hardness–softness. Antimicrobial activity of both H2L Schiff base ligand and its metal complexes was tested against different strains of bacteria and fungi species. Furthermore, all compounds had been screened for their anticancer activities against breast cancer (MCF-7) cell line. [Cu(H2L)(H2O)2Cl2]·2H2O complex had the lowest IC50 value = 47.3 µg/mL. For determining the more effective and probable binding mode between the H2L ligand, Co(II) and Zn(II) complexes with different active sites of 4K3V, 2YLB and 3DJD receptors, so molecular docking studies were investigated.  相似文献   

3.
Huge plastic consumption and depletion of fossil fuels are at the top of the world's environmental and energy challenges. The scientific community has tackled these issues through different approaches. Catalytic pyrolysis of plastic wastes to valuable products has been proved as a sustainable route which fits with the circular economy aspects. The design of catalytic materials is the central factor for performing the catalytic conversion of plastic wastes. This review aims to conduct a Bibliometric analysis of the pyrolysis of plastic wastes and non-precious-based catalysts by mapping research studies over the last fifty years. The analysis was developed via VOSviewer and RStudio tools. It showed the historical progress regarding plastic waste pyrolysis to produce valuable products and chemicals worldwide. The research shows that the top five countries with the highest citations and publications in this field were Spain, China, England, the USA and India. The Journal of Analytical and Applied Pyrolysis had the most comprehensive coverage of plastic waste. The relationship between the catalyst and the mechanism of plastic waste can influence the production yield and selectivity. The research gap and underrepresented research topics were identified, and previous research studies on developing non-precious-based catalysts that were most relevant to the current topic were reviewed and discussed. The challenges and perspectives on catalyst preparation and development for material complexity were critically discussed. Challenges of previous studies and directions for future research were provided. This report might guide the reader to take a general look at plastic waste valorization by pyrolysis and easily understand the main challenges.  相似文献   

4.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   

5.
This review is provided a detailed overview of the synthesis, properties and applications of nanoparticles (NPs) exist in different forms. NPs are tiny materials having size ranges from 1 to 100 nm. They can be classified into different classes based on their properties, shapes or sizes. The different groups include fullerenes, metal NPs, ceramic NPs, and polymeric NPs. NPs possess unique physical and chemical properties due to their high surface area and nanoscale size. Their optical properties are reported to be dependent on the size, which imparts different colors due to absorption in the visible region. Their reactivity, toughness and other properties are also dependent on their unique size, shape and structure. Due to these characteristics, they are suitable candidates for various commercial and domestic applications, which include catalysis, imaging, medical applications, energy-based research, and environmental applications. Heavy metal NPs of lead, mercury and tin are reported to be so rigid and stable that their degradation is not easily achievable, which can lead to many environmental toxicities.  相似文献   

6.
Silicon (Si) is a prime candidate for manufacturing water-splitting photoelectrochemical cells, however, the stability of this material remains a serious bottleneck. This is particularly true for the photoanode, subject to severe deactivation mechanisms. So far, thin film homogeneity has been the paradigm in the quest for stable and efficient Si-based photoanodes, which involved the use of vapor deposition methods to produce conformal thin films ensuring Si protection and efficient catalysis during operation. Conversely, recent reports on n-Si/metal thin film junctions have highlighted the benefits of the junction heterogeneity, generated in situ. In addition, results obtained from n-Si photoanodes partially covered with discontinuous films of Co and Ni nanoparticles lately suggested that homogeneity is not a prerequisite to reach efficiency and stability. Such findings may open new protection routes for Si-based photoanodes, breaking with classical strategies and allowing the use of liquid phase modification methods such as electrodeposition.  相似文献   

7.
TiO2 has gained tremendous attention as a cutting-edge material for application in photocatalysis. The performance of TiO2 as a photocatalyst depends on various parameters including morphology, surface area, and crystallinity. Although TiO2 has shown good catalytic activity in various catalysis systems, the performance of TiO2 as a photocatalyst is generally limited due to its low conductivity and a wide optical bandgap. Numerous different studies have been devoted to overcome these problems, showing significant improvement in photocatalytic performance. In this study, we summarize the recent progress in the utilization of TiO2 for the photocatalytic hydrogen evolution reaction (HER). Strategies for modulating the properties toward the high photocatalytic activity of TiO2 for HER including structural engineering, compositional engineering, and doping are highlighted and discussed. The advantages and limitations of each modification approach are reviewed. Finally, the remaining obstacles and perspective for the development of TiO2 as photocatalysts toward high efficient HER in the near future are also provided.  相似文献   

8.
《Arabian Journal of Chemistry》2020,13(11):8309-8337
The release of persistent organic pollutants (POPs) into the environment is an issue of global concern, as the chemicals are stable over a prolonged period resulting in their accumulation in many animals and plants. Although POPs are banned in several countries, many chemicals have been proposed as POP candidates to be added to the existing compounds as defined by the United Nations Stockholm Convention committee. To address the safe disposal and clean-up of such chemicals, new, and especially cost-effective, remediation technologies for POPs are urgently required. This review focuses on existing POPs and the types of remediation processes available for their removal. Particular attention is paid towards photocatalysis using nanocatalysts in this review, due to their effectiveness towards POP degradation, technological feasibility, and energy and cost-efficiency. The underlying principles and the key mechanisms of the photocatalysts based on TiO2 based materials, metal oxides, light-assisted Fenton systems, framework materials e.g. metal-organic frameworks and polyoxometalates, including metal-free and hybrid photocatalysts for POPs cleanup are described for advance applications in solving the POPs contamination in the environment. The improvements of photocatalytic performance especially the POPs removal mechanism using the conventional and modified process, the design and optimization of photoreactors, and the integration technology are the critical challenges for the emerging pollutants and require intensive research for the forthcoming future.  相似文献   

9.
This study focuses on the green synthesis of silver and gold nanoparticles using the marine algae extract, Sargassum horneri, as well as the degradation of organic dyes using biosynthesized nanoparticles as catalysts. The phytochemicals of the brown algae Sargassum horneri acted as reducing and capping agents for nanoparticle synthesis. Ultraviolet–visible absorption spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy were used to characterize the biosynthesized nanoparticles. The green-synthesized SH-AgNPs and SH-AuNPs exhibited high catalytic activity for degradation of organic dyes, such as methylene blue, rhodamine B, and methyl orange. The reduction reactions of dyes are based on pseudo-first-order kinetics.  相似文献   

10.
Targeting SARS-CoV-2 papain-like protease using inhibitors is a suitable approach for inhibition of virus replication and dysregulation of host anti-viral immunity. Engaging all five binding sites far from the catalytic site of PLpro is essential for developing a potent inhibitor. We developed and validated a structure-based pharmacophore model with 9 features of a potent PLpro inhibitor. The pharmacophore model-aided virtual screening of the comprehensive marine natural product database predicted 66 initial hits. This hit library was downsized by filtration through a molecular weight filter of ≤ 500 g/mol. The 50 resultant hits were screened by comparative molecular docking using AutoDock and AutoDock Vina. Comparative molecular docking enables benchmarking docking and relieves the disparities in the search and scoring functions of docking engines. Both docking engines retrieved 3 same compounds at different positions in the top 1 % rank, hence consensus scoring was applied, through which CMNPD28766, aspergillipeptide F emerged as the best PLpro inhibitor. Aspergillipeptide F topped the 50-hit library with a pharmacophore-fit score of 75.916. Favorable binding interactions were predicted between aspergillipeptide F and PLpro similar to the native ligand XR8-24. Aspergillipeptide F was able to engage all the 5 binding sites including the newly discovered BL2 groove, site V. Molecular dynamics for quantification of Cα-atom movements of PLpro after ligand binding indicated that it exhibits highly correlated domain movements contributing to the low free energy of binding and a stable conformation. Thus, aspergillipeptide F is a promising candidate for pharmaceutical and clinical development as a potent SARS-CoV-2 PLpro inhibitor.  相似文献   

11.
This study investigates the treatment of cutting oil wastewater from the automotive parts manufacturing industry to promote sustainability via the use of ‘used shot blasts’, which are the by-products of auto parts production. Used shot blasts are rich iron sources of Fe0, which becomes an effective catalyst in the Fenton reaction. A modified air-Fenton (MAF) system was proposed to generate hydroxyl radicals that eliminated recalcitrant organics in cutting oil wastewater. First, the Taguchi method, comprising the L18 orthogonal array design, was used to identify significant operation factors, including the size and amount of used shot blasts, initial pH, reaction time, mixing speed, initial cutting oil concentration, and air flow rate. Then, a central composite rotatable design coupled with response surface methodology (RSM) was used to determine the optimal conditions and model the influencing variables. The results provided three crucial variables for the cutting oil wastewater treatment through use of the MAF system: initial pH, the amount of used shot blasts, and initial cutting oil concentration. RSM was applied to reveal the optimum operating conditions, achieving a maximum removal efficiency of 92.82% for chemical oxygen demand (COD), 80.18% for total organic carbon (TOC), and 99.55% for turbidity within 45 min of operating the MAF system. The model agreed well with the experimental data, with coefficient of determination values of 0.9819, 0.9654, and 0.9715 for COD, TOC, and turbidity removal efficiency, respectively. Pseudo-second-order reaction kinetics fitted well for COD removal, with a rate constant of 0.0218 min?1 and hydrogen peroxide generation of 0.0169 M. Overall, the proposed MAF system was efficient and had a low operating cost (0.67 USD/m3).  相似文献   

12.
Photocatalysis has been extensively studied due to its potential ability to avoid the excessive use of chemical reagents and reduce the energy consumption by employing solar energy. Moreover, to alleviate the reduction in the membrane permeation selectivity, separation efficiency, and membrane service life caused by the emerging micro-pollutants and membrane fouling, membrane technology is often coupled with microbial, electrochemical, and catalytic processes. However, although physical/chemical cleaning and membrane module replacement can overcome the inherent limitations caused by membrane fouling and other membrane separation processes, high operating costs limit their practical applications. In this review, common preparation methods for TiO2 photocatalytic membranes are described in detail, and the main approaches to enhancing their photocatalytic performance are discussed. More importantly, the mechanism of the TiO2 photocatalytic membrane antifouling process is elucidated, and some applications of photocatalytic membranes in other areas are described. This review systematically outlines future research directions in the field of photocatalytic membrane modification, including metal and non-metal doping, fabrication of heterojunction structures, control over reaction conditions, increase in hydrophilicity, and increase in membrane porosity.  相似文献   

13.
《Arabian Journal of Chemistry》2020,13(12):8935-8964
This review depicts the exposure of chitin and chitosan base multifunctional nanomaterial composites for promising applications in field of biomedical science structure, synthesis as well as potential application from a colossal angle. We elaborated critically each of the chitin and chitosan base nanomaterial with its potential application toward biomedical science. For different biomedical applications it use in form of hydrogels, microsphere, nanoparticles, aerogels, microsphere and in form of scaffold. Due to this it had been blended with different polymer such as starch, cellulose, alginate, lipid, hyaluronic acid, polyvinyl alcohol and caboxymethyl cellulose. In this review article, a comprehensive overview of combination of chitin and chitosan base nanomaterial with natural as well as synthetic polymers and their biomedical applications in biomedical field involving drug delivery system all the technical scientific issues have been addressed; highlighting the recent advancements.  相似文献   

14.
The collective motion of synthetic active colloids is an emerging area of research in soft matter physics and is important both as a platform for fundamental studies ranging from non-equilibrium statistical mechanics to the basic principles of self-organization, emergent phenomena, and assembly underlying life, as well as applications in biomedicine and metamaterials. The potentially transformative nature of the field over the next decade and beyond is a topic of critical research importance. Electrokinetic active colloids represent an extremely flexible platform for the investigation and modulation of collective behavior in active matter. Here, we review progress in the past five years in electrokinetic active systems and related topics in active matter with important fundamental research and applicative potential to be investigated using electrokinetic systems.  相似文献   

15.
Paramagnetic surface active ionic liquids (PMSAILs) classify task-specific ionic liquids with magnetic properties by incorporating metal into the cationic or anionic part of the ionic liquid. Paramagnetic ionic liquids had long-chain either in cations or anions and showed excellent surface activity and magnetic properties without any need for the magnetic nanoparticles. These PMSAILs have inherent unique ionic liquid properties and self-assembled into various nano-aggregates such as micelles, vesicles, rod-like micelles, and etc., by modification in the structure of cations or anions. PMSAILs provide stimuli-responsive properties, which is one of the essential aspects of targeted applications. The appropriate functional tunability of anions and cations in PMSAILs leads to various multifaceted chemical and biological applications. A new emerging trend in PMSAIL research is hybridization with flexible materials. This review will mainly deal with the synthesis, characterization, and brief history of PMSAILs and their potential advantages in the various applications in micellar catalysis, purification and separation of biomolecules, compaction and decompaction of DNA, drug delivery, and other biomedical applications.  相似文献   

16.
Recently, nitrate pollution has attracted more public attention. In order to truly remove nitrate and reduce total nitrate content (TN) in water body, more harmless N2 should be converted from nitrate. Studies on catalytic removal of nitrate in wastewater have been carried out. However, the catalytic performance still needs to be significantly improved, especially the N2 selectivity. According to these, strategies that enable to efficiently improve N2 selectivity of catalytic denitrification were explored in this paper. Results implied that the catalyst with composite carrier that possesses porous structure, large surface area, excellent electronic properties, and stable physical–chemical property tends to have better catalytic performance. It is suggested that acid washing by 2 mol/L HCl for certain carriers be applied to enhancement of N2 selectivity. Additionally, higher N2 conversion was also achieved by addition of sodium bis-2-ethylhexyl sulphosuccinate (AOT) onto Pd with the formation of PdAOT-Cu catalyst, which may be ascribed to the AOT that partially shields Pd active sites and inhibits hydrogen spillover from Pd to Cu. Response Surface Methodology (RSM) was utilized for experimental design and prediction of the optimal parameters. More N2 was obtained under the predicted optimal conditions: 5.0 pH, 135 min time, 3.1 Pd: Cu, and 3.1 g/L Fe(0).  相似文献   

17.
A combination of viscoelastic surfactants with nanoparticles gives a new class of functional self-assembled materials promising for a large variety of applications. Nanoparticles improve the rheological properties of these systems because of the incorporation into the network of entangled wormlike micelles by linking to micellar end-caps, thus leading to elongation or cross-linking of the micelles. The present article reviews recent studies of these hybrid systems. Mechanisms of the interaction of nanoparticles with wormlike surfactant micelles as well as factors favoring the enhancement of rheological properties of viscoelastic surfactants by added nanoparticles are discussed, providing ways for proper design of such systems in the future. It is shown that viscoelastic surfactants modified with nanoparticles display very attractive features for practical applications, in particular, for fracturing fluids in oil recovery.  相似文献   

18.
《Comptes Rendus Chimie》2019,22(5):406-418
Single crystals of Ge-doped TiS2 polytypes, 1T, (4H)2, 12R, and their corresponding new a√3 × a√3 superstructure were grown by chemical vapor transport method. The crystals were characterized by combining X-ray diffraction and transmission electron microscopy techniques. The structures of these polytypes are all based on close packing layers of sulfur of CdI2-type structure. Except in the 1T polytype, the germanium atoms are observed to be equally distributed over both partial and complete occupancy layers. A significant distortion of the metal–sulfur distances is observed in the superstructure polytypes, as a consequence of metal–metal corrugated layers. The 12R-a√3 × a√3 superstructure is revealed by both electron diffraction and X-ray diffraction by the presence of satellite reflections. Electron diffraction patterns from the 12R polytype show highly structured diffuse scattering surrounding the main spots. These diffuse segments, which are arranged in triangles sharing vertices, correspond to a 2a* × 2a* superstructure and are attributed to the short-range order of metal atoms in the partially filled layers.  相似文献   

19.
20.
《印度化学会志》2023,100(6):100997
Schiff bases are versatile compounds for the design of the ternary complex. An experiment has been made to synthesize two novel complexes of Co(II). Here, The primary ligand, L1 was prepared by the condensation reaction of o-toluidine with 3-formyl chromone or o-toluidine with 3- methylquinolinecarbaldehyde and the secondary ligand which was 8-Hydroxyquinoline. These potent complexes were prepared by condensation of primary and secondary ligands with Cobalt salt. The reaction was performed through the conventional reflux method. The newly synthesized chromone and quinoline derived novel compounds are proposed to have significant antimicrobial activity against selective strains of bacteria and fungi. This can be great opportunity for researchers and the use of biological applications of the synthesized novel compounds can be a part of unique field of research for the future to be focus. Chromone derivative has great biological diversity in the medicinal and pharmaceutical fields. Along with these compounds, quinoline derivatives also have antibacterial, and antifungal activities. The synthesized ligand and complex were characterized by elemental analysis, molecular weight determination, magnetic moment measurement, melting point determination, spectral analysis (IR, UV–Vis, 1H NMR, Mass, etc.), and X-ray diffraction. The synthesized complexes were paramagnetic and non-electrolytic in nature. The Uv–Vis, FTIR, NMR, and Mass spectra suggest the octahedral geometry of the complexes. The synthesized compounds were further evaluated for biological studies against selected bacterial and fungal strains. It has been observed that the antimicrobial activity of most of the complexes are better than that of ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号