首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work a new, simple, rapid and environmentally friendly dispersive liquid–liquid microextraction (DLLME) method has been developed for extraction/preconcentration of some triazole pesticides in aqueous samples and in grape juice. The extract was analyzed with gas chromatography–flame ionization detection (GC–FID) or gas chromatography–mass spectrometry (GC–MS). The DLLME method was performed in a narrow-bore tube containing aqueous sample. Acetonitrile and a mixture of n-hexanol and n-hexane (75:25, v/v) were used as disperser and extraction solvents, respectively. The effect of several factors that influence performance of the method, including the chemical nature and volume of the disperser and extraction solvents, number of extraction, pH and salt addition, were investigated and optimized. Figures of merit such as linearity (r2 > 0.995), enrichment factors (EFs) (263–380), limits of detection (0.3–5 μg L?1) and quantification (0.9–16.7 μg L?1), and relative standard deviations (3.2–5%) of the proposed method were satisfactory for determination of the model analytes. The method was successfully applied for determination of target pesticides in grape juice and good recoveries (74–99%) were achieved for spiked samples. As compared with the conventional DLLME, the proposed DLLME method showed higher EFs and less environmental hazards with no need for centrifuging.  相似文献   

2.
The application of the recently introduced dispersive liquid–liquid microextraction (DLLME) for the separation and determination of an inorganic selenite [Se(IV)] derivative by means of a gas chromatography–electron-capture detection system has been studied. The selenium derivative was extracted with the DLLME technique using a mixture of ethanol (disperser solvent) and chlorobenzene (extraction solvent). The influences of the various analytical parameters on the derivatization reaction and microextraction procedure have been evaluated and optimized. Under the optimum conditions, an enrichment factor of 122 was obtained for only 5.00 mL of the water sample. The calibration graph was linear in the range of 0.015–10 μg L?1 with a detection limit of 0.005 μg L?1. The relative standard deviation for ten replicate measurements of 2 μg L?1 of selenium was 4.1%. The method was applied to the determination of selenium in environmental surface water samples with satisfactory recovery.  相似文献   

3.
Human serum albumin (HSA) was the most abundant protein in human plasma and has significant physiological function. In Tris–HCl buffer solution (pH 7.4), water-soluble semiconductor CdSe quantum dots (QDs) reacted with HSA and the products resulted in a great enhancement of the intensity of resonance Rayleigh scattering (RRS) and second-order scattering (SOS). Based on this, a new method was developed to investigate the interactions between QDs and HSA. The parameters with regard to determination were optimized, and the reaction mechanism was discussed. Under optimal conditions, the increments of scattering intensity (ΔI) were directly proportional to the concentrations of HSA in the range of 0.4–48.0 μmol L?1. The detection limits were 0.10 μmol L?1 for RRS method and 0.25 μmol L?1 for SOS method. The proposed method was sensitive, simple and rapid. It has been successfully applied to the determination of HSA in human urine samples. Analytical results obtained with this novel assay were satisfactory.  相似文献   

4.
A new cetyl‐alcohol‐reinforced hollow fiber solid/liquid‐phase microextraction (CA–HF–SLPME) followed by high‐performance liquid chromatography–diode array detection (HPLC–DAD) method was developed for simultaneous determination of ezetimibe and simvastatin in human plasma and urine samples. To prepare the CA–HF–SLPME device, the cetyl‐alcohol was immobilized into the pores of a 2.5 cm hollow fiber micro‐tube and the lumen of the micro‐tube was filled with 1‐octanol with the two ends sealed. Afterwards, the prepared device was introduced into 10 mL of the sample solution containing the analytes with agitation. Under optimized conditions, calibration curves plotted in spiked plasma and urine samples were linear in the ranges of 0.363–25/0.49–25 μg L?1 for ezetimibe/simvastatin and 0.193–25/0.312–25 μg L?1 for ezetimibe/simvastatin in plasma and urine samples, respectively. The limit of detection was 0.109/0.174 μg L?1 for ezetimibe/simvastatin in plasma and 0.058/0.093 μg L?1 for ezetimibe/simvastatin in urine. As a potential application, the proposed method was applied to determine the concentration of selected analytes in patient plasma and urine samples after medication and satisfactory results were achieved. In comparison with reference methods, the CA–HF–SLPME–HPLC–DAD method demonstrates considerable potential in the biopharmaceutical analysis of selected drugs.  相似文献   

5.

Magnetic graphene oxide/lanthanum phosphate nanocomposite (MGO@LaP) was synthesized and used as an efficient adsorbent for magnetic dispersive microsolid-phase extraction (MD-µ-SPE) of pesticides before gas chromatography–electron capture detector (GC–ECD) analysis. The adsorbent was thoroughly characterized with scanning electron microscopy, vibrating sample magnetometer, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. Optimized extraction conditions were investigated concerning extraction time, adsorbent amount, sample pH, and salt amount as well as desorption conditions (type and volume of desorption solvent and desorption time). Under the optimal conditions, the method demonstrated good linearity (3–1500 µg L?1) with satisfactory determination coefficients of >?0.997 and low detection limits for both chlorpyrifos (0.67 µg L?1) and hexaconazole (0.89 µg L?1). Finally, the method showed high analyte relative recoveries in the range of 78–120% for the determination of the selected pesticides in water and fruit juice samples.

  相似文献   

6.
In this work, the potential of modified multiwalled carbon nanotubes for separation and preconcentration of trace amounts of manganese ion is studied. Multiwalled carbon nanotubes were oxidized with concentrated HNO3 and then modified with loading 1-(2-pyridylazo)-2-naphtol. Mn(II) ions could be quantitatively retained by modified multiwalled carbon nanotubes in the pH range of 8–9.5. Elution of the adsorbed manganese was carried out with 5.0 mL of 0.1 mol L?1 HNO3. Detection limit is 0.058 ng mL?1 and analytical curve is linear in the range of 0.1 ng mL?1–5.0 μg mL?1 in the initial solution with a correlation coefficient 0.9977 and the preconcentration factor is 100. Relative standard deviation for eight replicate determination of 0.5 μg mL?1 of manganese in the final solution is 0.41%. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions, were studied for preconcentration of Mn(II) ions in detail to optimize the conditions. The method was successfully applied for separation, preconcentration and determination of manganese in different samples.  相似文献   

7.
Square wave anodic stripping voltammetry was used in simultaneous determinations of eco-toxic metals (Pb, Cd, Cu and Zn) on bismuth film electrodes. The electrodes were prepared in situ on a glassy-carbon electrode (GCE) from 0.1 M acetate buffer (pH 4.5) containing 200 μg L?1 of bismuth (III), as well ex situ on electrochemically oxidized graphitized polyacrylonitrile carbon fibres from 200 mg L?1 Bi(NO3)3 in 1% HNO3 (aqueous) solution. Preparation of a Bi-modified carbon fibre electrode (CFE) was by cation exchange of Bi+3 ions for H+ of the acidic surface groups of the electro-oxidized carbon fibres, followed by electrochemical reduction to Bi0. For the Bi-GCE the linear range was 20–280 μg L?1 for zinc, 10–100 μg L?1 for lead, 10–80 μg L?1 for copper, and 5–50 μg L?1 for cadmium. For the Bi-CFE it was 20–160 μg L?1 for zinc, 10–100 μg L?1 for lead, 10–100 μg L?1 for copper, and 2–120 μg L?1 for cadmium. For both kinds of bismuth modified carbon electrodes, low limits of detection and satisfactory precision were achieved. The method was successfully applied to certified reference materials of biological (bovine liver) and environmental (mussel tissue) importance.   相似文献   

8.

Tritium concentration was monitored in different water sources collected around Kaiga Nuclear Power plant, India. The concentration was in the ranges?<?1.9–27.4 Bq L?1 (GM?=?4.0 Bq L?1) for groundwater,?<?1.9–42.1 Bq L?1 (GM?=?3.5 Bq L?1) for surface water and in 12.4–42.0 Bq L?1 (GM?=?24.07 Bq L?1) for reservoir water. The concentration values observed in this study are similar to those reported for other PHWR stations of the world. The radiation dose to the public due to ingestion of Tritium through groundwater was computed to be 0.08 μSvy?1.

  相似文献   

9.
《Analytical letters》2012,45(12):1976-1988
A sensitive and selective electrochemical method for the simultaneous determination of dopamine (DA) and uric acid (UA) was developed using a pyrogallol red modified carbon paste electrode. Under the optimized conditions, the peak current was linearly dependent on 1.0–700.0 μmol L?1 DA and 50.0–1000.0 μmol L?1 UA. The detection limits for DA and UA were 0.78 μmol L?1 and 35 μmol L?1, respectively. Finally, this method was also examined for the determination of DA and uric acid in real samples such as drugs and urine.  相似文献   

10.
In this study, dispersive liquid–liquid microextraction (DLLME) combined with ultra-high-pressure liquid chromatography (UHPLC)–tunable ultraviolet detection (TUV), has been developed for pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in aqueous samples. The key factors, including the kind and volume of extraction solvent and dispersive solvent, extraction time, salt effect and pH, which probably affect the extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.0500–100 μg L?1 for TCS, 0.0250–50.0 μg L?1 for TCC, and 0.500–100 μg L?1 for M-TCS, respectively, with correlation coefficients (r2) > 0.9945. The limits of detection (LODs) ranged from 45.1 to 236 ng L?1. TCS in domestic waters was detected with the concentration of 2.08 μg L?1. The spiked recoveries of three target compounds in river water, irrigating water, reclaimed water and domestic water samples were achieved in the range of 96.4–121%, 64.3–84.9%, 77.2–115% and 75.5–106%, respectively. As a result, this method can be successfully applied for the rapid and convenient determination of TCS, TCC and M-TCS in real water samples.  相似文献   

11.
This study reports a deep eutectic solvent based dispersive liquid-liquid microextraction (DES-DLLME) to extract aromatic amines (4-chloroaniline, 3-nitroaniline, 2-naphtylamine) in environmental water samples before their HPLC-UV determination. The hydrophobic deep eutectic solvent (DES) was prepared by mixing bis(2-ethylhexyl) phosphate (BEHP) as a hydrogen bond acceptor and phenol as a hydrogen bond donor. Affecting factors on the extraction of the aromatic amines were investigated and optimized. Optimum conditions were: DES type: BHHP-Ph ratio: 1 to 2; pH of solution: 8.0; DES volume: 80 µL, salt amount: 10% (w/v). Under optimum conditions, the developed method showed a wide linear range of 0.2–200 µg L?1 (R2 ≥ 0.99) with satisfactory recoveries (≥90.0%). The limit of detections (LODs) and limit of quantifications (LOQs) were in the range of 0.07–0.17 µg L?1 and 0.2–0.5 µg L?1, respectively. The enrichment factors were 170, 180 and 190 for 4-chloroaninile, 3-nitroaniline, 2-naphtylamine, respectively. Based on obtained results, the proposed method is straightforward, efficient, sensitive, and eco-friendly for the extracting and determining of the aromatic amines in environmental water samples.  相似文献   

12.
Lead is the non-essential trace element in the human body, and it has been confirmed that drinking water is one of the sources of lead in human body. In the research, based on the sensitive colour reaction of lead with I?–EV+–PVA, a simple, sensitive, accurate and portable method for the determination of trace lead in drinking waters was proposed. Chemicals and physicals had been optimized in detail. The apparent molar absorption coefficient was up to 7.4 × 105 mol L?1 cm?1. The developed method provided a linearity range over 5–80 μg L?1. The regression deviation was between 0.71% and 2.33%. The 3σ detection limit was 0.9 μg L?1. Close to the quantitation limit for the analyte the relative standard deviation was 1.10% (n = 10) at 40 μg L?1. The method developed here for analysis of lead yielded results that were comparable with those of the GFAAS.  相似文献   

13.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

14.
A method for preconcentration of palladium at trace level on modified multiwalled carbon nanotubes columns and determination by flame atomic absorption spectrometry (FAAS) has been developed. Multiwalled carbon nanotubes (MWCNTs) were oxidized with concentrated HNO3 and the oxidized multiwalled carbon nanotubes were modified with 5-(4′-dimethylamino benzyliden)-rhodanine, and then were used as a solid sorbent for preconcentration of Pd(II) ions. Factors influencing sorption and desorption of Pd(II) ions were investigated. The sorption of Pd(II) ions was quantitative in the pH range of 1.0–4.5, whereas quantitative desorption occurs with 3.0 mL 0.4 mol L?1 thiourea. The amount of eluted palladium was measured using flame atomic absorption spectrometry. The effects of experimental parameters, including sample flow rate, eluent flow rate, and eluent concentration were investigated. The effect of coexisting ions showed no interference from most ions tested. The proposed method permitted a large enrichment factor (about 200). The relative standard deviation of the method was ±2.73% (for eight replicate determination of 2.0 μg mL?1 of Pd(II)) and the limit of detection was 0.3 ng mL?1. The method was applied to the determination of Pd(II) in water, road dust, and standard samples.  相似文献   

15.
A novel method was developed for the determination of eight pyrethroids in water samples by liquid–liquid microextraction based on solidification of floating organic droplets followed by gas chromatography with electron capture detection. The type and volume of the extraction solvents, extraction time, sample solution temperature, stirring rate and ionic strength were studied and optimized. Under the optimum conditions, enrichment factors ranged from 824 to 1,432, and the limit of detection range from 2.0 to 50 ng?L?1. The calibration graph is linear from 0.15 to 80 μg?L?1 for cyfluthrin, fenvalerate, fluvalinate and deltamethrin, 0.09 to 80 μg?L?1 for fenpropathrin, 0.006 to 80 μg?L?1 for lambda-cyhalothrin, 0.026 to 80 μg?L?1 for permethrin, 0.01 to 80 μg?L?1 for cypermethrin. The correlation coefficients (r) varied from 0.9961 to 0.9988. The method was successfully applied to the determination of pyrethroid pesticide residues in tap water, well water, reservoir water, and river water. Recoveries ranged from 79.0% to 113.6%, and relative standard deviations are between 4.1% and 8.7%.  相似文献   

16.
Halitosis with the main components of trace volatile sulfur compounds widely affects the quality of life. In this study, an adaptable active sampling system with two sample‐collection modes of direct injection and solid‐phase microextraction was developed for the rapid and precise determination of trace volatile sulfur compounds in human halitosis coupled with gas chromatography–flame photometric detection. The active sampling system was well designed and produced for efficiently sampling and precisely determining trace volatile targets in halitosis under the optimized sampling and detection conditions. The analytical method established was successfully applied for the determination of trace targets in halitosis. The limits of detection of H2S, CH3SH, and CH3SCH3 by direct injection were 0.0140–23.0 μg/L with good recoveries ranging from 82.2 to 118% and satisfactory relative standard deviations of 0.4–9.5% (n = 3), respectively. The limit of detections of CH3SH and CH3SCH3 by solid‐phase microextraction were 2.03 and 0.186 × 10?3 μg/L with good recoveries ranging from 98.3 to 108% and relative standard deviations of 5.9–9.0% (n = 3). Trace volatile targets in positive real samples could be actually found and quantified by combination of direct injection and solid‐phase microextraction. This method was reliable and efficient for the determination of trace volatile sulfur compounds in halitosis.  相似文献   

17.
《Analytical letters》2012,45(11):1620-1631
Abstract

A rapid, simple, and efficient liquid-phase microextraction (LPME) method coupled with high-performance liquid chromatography and ultraviolet detection for the analysis of triazine herbicides was developed in this study. Under the optimum conditions, the enrichment factors and extraction recoveries were 33.0–72.6 and 11.2–23.2%, respectively. The detection limits (LODs) were in the range of 0.03–0.10 µg L?1. The relative standard deviations for the determination of the triazine herbicides at μg L?1 levels varied in the range 2.05–8.15%. The method was successfully applied in the determination of the triazine herbicides in aqueous samples with satisfactory results.  相似文献   

18.
A rapid and simple large volume headspace (HS) sampling technique termed headspace solid-phase microcolumn extraction (HS-SPMCE) is described. HS gas above a liquid or solid sample is aspirated by attaching a gas-tight syringe onto a glass thermal desorption tube filled with Tenax sorbent. The trapped analytes are recovered by thermal desorption for gas chromatography–mass spectrometry (GC–MS) analysis. Benzene, toluene, ethylbenzene and the xylene isomers (BTEX) are used as model compounds to demonstrate the application of the extraction procedure for water samples. The results of the tests of the effect of agitation time and aspiration rate on recovery of the analytes show a good robustness of the method. BTEX are determined in the linear range from 0.5 to 50.0 μg L?1 with limits of detection (3 σ) ranging within 0.09–0.14 μg L?1 (MS was in scan mode). The method provides a good repeatability (RSD < 9%) and only a negligible carryover effect was observed ( ≤0.05%) when analysing BTEX at concentration 50.0 μg L?1.  相似文献   

19.
A simple spectrophotometric method was developed for the simultaneous determination of five commercial cationic dyes at 2.0?8.5 μg L?1 level after using diatomite as solid-phase extractant. The method is based on preconcentration of the five dyes on natural diatomite solid-phase extractant and on multivariate calibration using partial least squares method (PLS-1). Compared with commonly used chromatographic or electrophoretic methods the developed method is simple and sensitive. With enrichment factors between 89 and 96, diatomite outperformed zeolite and activated carbon for dyes preconcentration. Before preconcentration and using PLS-1 method, the cationic dyes were simultaneously analyzed with linear ranges of 0.18–4.5, 0.32–5.0, 0.23–4.5, 0.45–8.0 and 0.82–12.0 mg L?1 for crystal violet, malachite green, methylene blue, safranine O, and thioflavin T, respectively. The detection limits of dyes were estimated using Lorber’s method and found to be within the range 43–245 μg L?1. The proposed SPE/PLS-1 method was applied to spiked stream water samples with good accuracy (79–91%) and precision (RSD 1.8–7.3%) but with slightly lower enrichment factors (80–92).  相似文献   

20.
An automated solid phase extraction method by flow analysis on-line inductively coupled plasma mass spectrometry (FI-ICP-MS) for the determination of cobalt, chromium, nickel, cadmium, manganese, zinc, copper and lead in sea-water and other natural waters is described. The system is based on retention of the analytes onto a minicolumn packed with a chelating resin, 1,5-bis (2-pyridyl)-3-sulphophenyl methylene thiocarbonohydrazide immobilized on aminopropyl-controlled pore glass, placed in the injection valve of a simple flow manifold. The effects of chemical and flow variables were investigated and selected as a compromise between sensitivity and sampling frequency. So, the sample solutions (adjusted to pH 8.0 ± 0.5) were passed through the column. After washing the column with water, the adsorbed metals were subsequently eluted into the plasma with 4% m/m nitric acid. Detection limits of the trace metals (180 s sample loading time at a sample flow rate of 0.7 mL min? 1; sampling frequency 8.6 h? 1) were 0.002 μg L? 1 for Co, 0.057 μg L? 1 for Cr, 0.117 μg L? 1 for Ni, 0.004 μg L? 1 for Cd, 0.210 μg L? 1 for Mn, 0.260 μg L? 1 for Zn, 0.030 μg L? 1 for Cu and 0.020 μg L? 1 for Pb, with enrichment factors between 2.2 and 6.8. The accuracy of the proposed method was checked with certified reference materials (CRMs) of sea-water SLEW 3, LGC6016 and CASS-5, river water SLRS-5 and fortified lake water TMDA-54.4. The results from the determination of these metals were in agreement with the certified values and recovery values ranged between 92.2 and 110.6%. The method was applied to the determination of these metal ions in sea-water samples collected in the Málaga Bay in order to realize a pilot study necessary to generate preliminary information on which to base a more detailed pollution study by heavy metals of the Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号