首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Chitosan is a well-known excellent adsorbent for a number of organics and metal ions, but its mechanical properties and specific gravity should be enhanced for practical operation. In this study, activated clay was added in chitosan slurry to prepare composite beads. The adsorption isotherms and kinetics of two organic acids (tannic acid, humic acid) and two dyes (methylene blue, reactive dye RR222) using composite beads, activated clay, and chitosan beads were compared. With composite beads as an adsorbent, all the isotherms were better fitted by the Freundlich equation. The adsorption capacities with composite beads were generally comparable to those with chitosan beads but much larger than those with activated clay. The pseudo-first-order and pseudo-second-order equations were then screened to describe the adsorption processes. It was shown that the adsorption of larger molecules such as tannic acid (MW, 1700 g mol(-1)), humic acid, and RR222 from water onto composite beads was better described by the pseudo-first-order kinetic model. The rate parameters of the intraparticle diffusion model for adsorption onto such adsorbents were also evaluated and compared to identify the adsorption mechanisms.  相似文献   

2.
Dye and heavy metal contaminants are mainly aquatic pollutants. Although many materials and methods have been developed to remove these pollutants from water, effective and cheap materials and methods are still challenging. In this study, highly porous hydroxyapatite/graphene oxide/chitosan beads (HGC) were prepared by a facile one-step method and investigated as efficient adsorbents. The prepared beads showed a high porosity and low bulk density. SEM images indicated that the hydroxyapatite (HA) nanoparticles and graphene oxide (GO) nanosheets were well dispersed on the CTS matrix. FT-IR spectra confirmed good incorporation of the three components. The adsorption behavior of the obtained beads to methylene blue (MB) and copper ions was investigated, including the effect of the contact time, pH medium, dye/metal ion initial concentration, and recycle ability. The HGC beads showed rapid adsorption, high capacity, and easy separation and reused due to the porous characteristics of GO sheets and HA nanoparticles as well as the rich negative charges of the chitosan (CTS) matrix. The maximum sorption capacities of the HGC beads were 99.00 and 256.41 mg g−1 for MB and copper ions removal, respectively.  相似文献   

3.
利用甘蔗渣提取纤维素修饰环糊精聚合物,成功制备可再生纤维素/环糊精聚合物(SUG-EPI-CDP)吸附剂。采用傅利叶红外光谱仪(FT-IR)与热重分析仪(TGA)对材料进行表征,同时考察了该材料对水中亚甲基蓝(MB)吸附特性和机理的影响。结果表明:在溶液pH值为7、温度为30 ℃的条件下,SUG-EPI-CDP可在120 min内有效去除MB,去除率达80.9%。通过模型拟合发现,SUG-EPI-CDP对MB的吸附是自发且吸热的过程,符合准二阶动力学方程和Langmuir等温线模型。该吸附剂实验最大吸附量达8.1 mg/g,远高于其他废料所制备的吸附剂。结果表明,利用可再生纤维素修饰可有效提高环糊精聚合物的吸附性能,同时为甘蔗渣资源化利用提供了新途径。  相似文献   

4.
Biosorption of uranium from aqueous solution onto the free and entrapped algae, “Chlamydomonas reinhardtii” in carboxymethyl cellulose (CMC) beads was investigated in a batch system using bare CMC beads as a control system. CMC can be a potential natural biosorbent for radionuclide removal as it contains carboxyl groups. However, limited information is available with the biosorption of uranium by CMC, when adsorption isotherm, kinetics and thermodynamics parameters are concerned. The biosorbent preparations were characterized by swelling tests, FTIR, and surface area studies. The effects of pH, temperature, ionic strength, biosorbent dosage, and initial uranium concentrations on uranium biosorption were investigated. Freely suspended algae exhibited the highest uranium uptake capacity with an initial uranium ion concentration of 1,000 mg/L at pH of 4.5 and at 25 °C. The removal of U(VI) ion from the aqueous solution with all the tested biosorbents increased as the initial concentration of U(VI) ion increased in the medium. Maximum biosorption capacities for free algal cells, entrapped algal cells, and bare CMC beads were found to be 337.2, 196.8, and 153.4 mg U(VI)/g, respectively. The kinetic studies indicated that the biosorption of U(VI) ion was well described by the pseudo-second order kinetic model. The variations in enthalpy and entropy for the tested biosorbent were calculated from the experimental data. The algal cells entrapped beads were regenerated using 10 mM HNO3, with up to 94 % recovery. Algal cells entrapped CMC beads is a low cost and a potential composite biosorbent with high biosorption capacity for the removal of U(VI) from waters.  相似文献   

5.
Global attention is increasingly focused on the adverse health and environmental impacts of textile dyes, marking the necessity for effective and sustainable dye remediation strategies in industrial wastewater. This study introduces a novel, eco-friendly activated carbon produced from olive stones (OLS), a readily available by-product of the olive oil industry. The OLS was chemically activated with H3PO4 and KOH, creating two materials: OLS-P and OLS-K, respectively. These were then utilized as cost-effective adsorbents for the removal of methylene blue (MB) dye. The activated materials were characterized via X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), iodine number, and pHpzc analysis, with the zero-point charge determined as approximately pH 1 for OLS-P and pH 8 for OLS-K. Batch adsorption experiments conducted at various temperatures revealed that adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Temperature was found to significantly impact adsorption performance, with OLS-K demonstrating a substantial increase in adsorption capacity (qe) from 6.27 mg/g at 23˚C to 94.7 mg/g at 32 ˚C. Conversely, OLS-P displayed a decrease in qe from 16.78 mg/g at 23 ˚C to 3.67 mg/g at 32 ˚C as temperature increased. The study highlights the potential of KOH-treated olive stones as a promising, cost-efficient adsorbent for methylene blue remediation from wastewater.  相似文献   

6.
《印度化学会志》2023,100(5):101003
Nanotechnology has a great significance owing to its large variety of applications. Silver nanoparticles (AgNPs@Ev) were produced using water extract of Echium vulgare aerial part by a simple, nontoxic, eco-friendly method. The spectroscopic study identified the structure of AgNPs@Ev. The absorption was detected as 460 nm by UV/Vis spectrophotometer. TEM analysis presented the morphology of nanostructures and particle size was calculated as 9.55 nm. XRD pattern showed the structure to be face-centered cubic unit cell. EDS analysis verified the presence of elemental silver. DLS and zeta potential analyses were executed by Zetasizer. The stability of nanostructures was revealed by the zeta potential analysis (−3.1 mV). The degradation performance of AgNPs@Ev on methylene blue was evaluated by UV/Vis spectrophotometer and 64% of methylene blue was degraded after 40 h. Quantitative analysis of natural compounds was performed by HPLC and isoquercitrin (1.32 mg/g extract), naringin (1.15 mg/g extract) were detected as major products. Antioxidant activity of extract and nanoparticles were achieved. AgNPs@Ev exhibited excellent DPPH, ABTS, and FRAP activities (IC50, 6.8 μg/mL), (IC50, 2.3 μg/mL), (5.3 μmol/g sample) respectively.  相似文献   

7.
《印度化学会志》2023,100(4):100963
The objective of the present study is to utilize fly ash cenosphere to remove methylene blue (MB) from the water streams. Nickel oxide is a typical semiconductor used as proficient adsorbent material for degradation of dye with environment friendly applications due to its excellent chemical stability and high catalytic activity. The chitosan cenosphere buoyant composite coated with NiO was synthesized with hydrothermal grafting reaction using silane coupling agent and epichlorohydrin as a cross-linking reagent. The batch adsorption experiments were carried out with a cationic dye, methylene blue as a representative organic pollutant to investigate the adsorptive capabilities of the composite as adsorbent. The influence of pH (2-12), initial concentration of dye (50–200 mg/L), temperature (37–47 °C) and contact time (0–24 h) were taken as parameters in the study. On the relative elimination of MB, the effect of time and temperature were investigated. The adsorption kinetics for MB was correlated and found to observe the pseudo-second order kinetic model, whereas the equilibrium adsorption isotherm follows the Langmuir model (R2 > 0.99). The results indicate that the floating fly ash cenosphere coated with NiO proved to be more responsive for enhanced degradation of methylene blue.  相似文献   

8.

The syntheses of crown ether-type organic composite adsorbents embedded in high-porous silica beads for simultaneous recovery of lithium and uranium in seawater have been achieved and the adsorption behavior of lithium and uranium on the composite adsorbents has been examined in several types of original seawater in the wide temperature and pH ranges. As a result, the composite adsorbents composed of benzo-15-crown-5 (BC15) and benzo-18-crown-6 (BC18) showed the top-class maximum adsorption capacities for lithium [6.5 mg/g (BC15), 11 mg/g (BC18)] and uranium [12 mg/g (BC15), 4.2 mg/g (BC18)].

  相似文献   

9.
Application of chitosan-based materials as adsorbents in wastewater treatment has received considerable attention in recent years. This study is concerned with the influence of various parameters of the reaction medium with a metal and a biosorbant on the kinetics of copper biosorption from synthetic solutions. Initially, we prepared pure chitosan-based membranes and those modified in two different ways: chitosan membrane prepared from traditional acetic acid and the membrane prepared from glycine hydrochloride, chitosan membranes modified such as chitosan/polyvinyl alcohol (PVA) blends membrane with different compositions (100/0, 80/20, 50/50, 20/80 and 0/100%) and chitosan membranes cross-linked with glutaraldehyde. The membranes were characterized by FTIR spectroscopy, DSC, and rheological measurements. Then, we studied the kinetics of copper biosorption by the membranes. The results suggest that adding PVA to a chitosan membrane can greatly improve the flexibility and wettability of chitosan membranes. The values attained in equilibrium for the chitosan membranes prepared from glycine hydrochloride (95.5 mg g?1 for chitosan/PVA 50/50%) exceed those for chitosan membranes prepared from acetic acid (61.5 mg/g for chitosan/PVA 50/50%).  相似文献   

10.
氨基酸修饰壳聚糖对胆固醇的吸附作用   总被引:3,自引:0,他引:3  
通过将不同脱乙酰度的壳聚糖粉末与戊二醛交联,再经苯丙氨酸和色氨酸修饰,得到了两种珠状壳聚糖吸附剂,并进而研究了有关吸附剂对胆因醇的吸附性能。实验表明,交联壳聚糖珠对CHO的吸附能力比壳聚糖粉末降低,而经不同氨基酸修饰后的壳聚糖珠对CHO吸附能力提高,用Phe修饰比用Try修饰的珠吸附性能更好些。  相似文献   

11.
Zhang  Zhiyong  Liu  Tang  Wu  Deyi 《Cellulose (London, England)》2022,29(16):8749-8768

The removal and recovery of phosphate from water using adsorption technology require that the adsorbent material is easily separable from treated water. Continuous efforts are still awaited to develop additional efficient phosphate adsorbents that are economical to fabricate. In this study, hydrous zirconia-impregnated chitosan beads (HZCB) containing different Zr/chitosan ratios were synthesized using a facile scheme. We found that HZCB with a Zr/amine molar ratio of?~?1 (HZCB-1) possessed excellent stability and phosphate removal performance. This optimized material was characterized with XRD, SEM, FTIR, XPS, specific surface area and point of zero charge measurements. The maximum adsorption capacity was 42.02 mg/g (at pH?~?6.7). The adsorption kinetics were best described by a pseudosecond-order model, and the rate constant of HZCB-1 was much lower than that of its powder but was similar to the commercial bead product Ferrolox. The removal of phosphate depended substantially upon pH and was enhanced by lowering the pH. Good selectivity of HZCB-1 for phosphate was observed, although the coexistence of sulfate produced a significant negative effect. Direct coordination of phosphate to Zr atoms by replacing hydroxyls was the dominant adsorption mechanism (~?85%), while chitosan also contributed to phosphate removal (~?15%). Adsorbed phosphate was successfully eluted by an NaOH solution, and the material obtained after desorption and regeneration was able to be repeatedly used. The results of column studies indicated that this material could be implemented in long-term application.

  相似文献   

12.
Linoleic acid attached chitosan beads [poly(LA-Ch)] (1.25 μm in diameter) are obtained by the formation of amide linkages between linoleic acid and chitosan. Poly(LA-Ch) beads are characterized by FTIR, TEM, and swelling studies. Poly(LA-Ch) beads are used for the purification of immunoglobulin-G (IgG) from human plasma in a batch system. The maximum IgG adsorption is observed at pH 7.0 for HEPES buffer. IgG adsorption onto the plain chitosan beads is found to be negligible. Adsorption values up to 136.7 mg/g from aqueous solutions are obtained by poly(LA-Ch) beads. IgG adsorption saw an increase as a result of increasing temperature. Higher amounts of IgG are adsorbed from human plasma (up to 390 mg/g) with a purity of 92%. The adsorption phenomena appeared to follow a typical Langmuir isotherm. It is observed that IgG could be repeatedly adsorbed and desorbed without significant loss when we take into account the adsorption amount. It is concluded that the poly(LA-Ch) beads allowed one-step purification of IgG from human plasma.  相似文献   

13.
In this study, clinoptilolite as a natural zeolite which was magnetized using precipitation of maghemite nanoparticles was coated by chitosan and then modified by thylenediamine tetra-acetic acid to add functional groups and its performance in the removal of toxic methylene blue from aqueous solution was investigated. Synthesized magnetic nanocomposite was characterized by VSM, XRD, SEM, and FTIR analyses. The saturation magnetization of the final nanocomposite was obtained as 22.2 emu/g. In addition, the factors affecting adsorption process and its optimization were investigated using response surface methodology and central composite design. Data obtained by different isotherm, adsorption kinetic and thermodynamic models were also studied. The results showed good agreement of these data with the Freundlich isotherm model (R 2 = 0.99), and it was found that adsorption follows the second-order kinetics model (R 2 = 1). Negative values of ΔG and positive values of ΔH obtained from this adsorption thermodynamic study revealed that the methylene blue adsorption process is exothermic and spontaneous. The optimum conditions to ensure maximum adsorption efficiency were determined, and included pH = 5.54, adsorbent amount of 0.03 g, temperature of 31.18 °C, and initial solution concentration of 16.21 mg/l which resulted in a removal efficiency of 99.44%. The results indicated that this nanocomposite can be used as a proper adsorbent for adsorbing methylene blue and other dye contaminants.  相似文献   

14.
Arsenic is highly toxic and carcinogenic element that mainly enters into our body through drinking water and caused adverse effect even at low concentration. A new type of cation exchanger is developed from waste biomass of watermelon rind after increasing the carboxyl functional groups by saponification. Saponified Watermelon Rind (SWR) was further loaded with La(III) to attenuate the contamination of As(III) from water. Characterization of biosorbent was performed using Fourier Transform Infra-Red (FTIR) spectroscopy, Field emission Scanning Electron Microscopy (Fe-SEM,) Energy Dispersive X-ray (EDX) spectroscopy and zeta potential analysis. Arsenic speciation of sorption product through X-ray photoelectron spectroscopic (XPS) analysis revealed that As(III) is partially converted into As(V) during biosorption process. The biosorption tests for As(III) were explored under different operating conditions. La(III)-SWR towards As(III) biosorption was best described by Langmuir biosorption isotherm and pseudo second order kinetic model. At a pH of 12.08, the optimum biosorption capacity was found to be 37.73 ± 0.12, 48.78 ± 0.09, 62.50 ± 0.11 mg/g, respectively at temperatures 298 K, 303 K and 308 K. The existance of chloride and nitrate showed negligible interference whereas sulphate and phosphate significantly inhibits As(III) biosorption. Thermodynamic study showed spontaneous and endothermic nature As(III) biosorption onto La(III)-SWR. The sorbed As(III) was eluted almost completely using 2 M NaOH. The findings of this study insinuated that La(III)-SWR biosorbent investigated in this study can be a low cost, environmentally benign and eco-friendly material for the treatment of aqueous solution polluted with arsenic ions.  相似文献   

15.
Phanerochaete chrysosporium basidiospores immobilized onto carboxymethylcellulose were used for the removal of mercury ions from aqueous solutions. The biosorption of Hg(II) ions onto carboxymethylcellulose and both immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was studied using aqueous solutions in the concentration range 30-700 mg l−1. The biosorption of Hg(II) ions by the carboxymethylcellulose and both live and heat-inactivated immobilized preparations increased as the initial concentration of mercury ions increased in the medium. Maximum biosorption capacity for immobilized live and heat-inactivated fungal mycelia of Phanerochaete chrysosporium was found to be 83.10 and 102.15 mg Hg(II) g−1, respectively, whereas the amount of Hg(II) ions adsorbed onto the plain carboxymethylcellulose beads was 39.42 mg g−1. Biosorption equilibria were established in approximately 1 h and the correlation regression coefficients show that the adsorption process can be well defined by a Langmuir equation. Temperature changes between 15 and 45 °C did not affect the biosorption capacity. The effect of pH was also investigated and the maximum adsorption of Hg(II) ions onto the carboxymethylcellulose and both live and heat-inactivated immobilized fungal mycelia was observed at pH 6.0. The carboxymethylcellulose-fungus beads could be regenerated using 10 mM HCl, with up to 95% recovery. The biosorbents were used in three biosorption-desorption cycles and no significant loss in the biosorption capacity was observed.  相似文献   

16.
In this study, activated carbon was blended with grape stalks powder to adsorb methylene blue (MB) dye with various concentrations from a wastewater. For this purpose, five independent variables involving pH (2–13), contact time (5–270 min), grape stalks powder dosage (0.1–10 g/l), methylene blue initial concentration (20–300 mg/l), and activated carbon dosage (0.1–10 g/l) for methylene blue adsorption were studied. The Central Composite Design (CCD) under Response Surface Methodology (RSM) was applied to estimate the independent variables effects on the methylene blue adsorption. The pseudo- first order, pseudo-second order, Elovich and intraparticle diffusion models were employed to study the adsorption kinetics and isotherm. The Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models were applied to investigate the adsorption isotherm. It was concluded that the intraparticle diffusion isotherm and pseudo-second order kinetic models could show the best results. Furthermore, some data such as physical adsorption (by analyzing FTR and applying some standard equations) and mean free energy (E) were discovered in this research. Finally, activated carbon blended with grape stalks powder as an effective bio-adsorbent for the methylene blue reduction from a wastewater was introduced.  相似文献   

17.
Access to clean water has become increasingly difficult, motivating the need for materials that can efficiently remove pollutants. Hydrogels have been explored for remediation, but they often require long times to reach high levels of adsorption. To overcome this limitation, we developed a rapid, locally formed hydrogel that adsorbs dye during gelation. These hydrogels are derived from cellulose—a renewable, nontoxic, and biodegradable resource. More specifically, we found that sulfated cellulose nanofibers or sulfated wood pulps, when mixed with a water-soluble, cationic cellulose derivative, efficiently remove methylene blue (a cationic dye) within seconds. The maximum adsorption capacity was found to be 340 ± 40 mg methylene blue/g cellulose. As such, these localized hydrogels (and structural analogues) may be useful for remediating other pollutants.  相似文献   

18.
In the present study, to remove methylene blue (MB) from aqueous solution, some agricultural residues and cheap bioadsorbents such as sawdust of palm trees, eucalyptus, and sour lemon were used. To do this, significant parameters like contact time, temperature, pH, initial concentration, and adsorbent dosage were checked. The results affirmed that the best conditions for MB adsorption from aqueous solution were obtained such as the temperature of 25?°C, pH of 8, adsorbent dosage of 2g/L, contact time of 120?minutes, and dye concentration of 5?mg/l which under these conditions the adsorption efficiencies determined were 95.8, 93.4, and 92.8% using sawdust of palm tree, eucalyptus, and sour lemon, respectively. Also, the equilibrium behavior of adsorbents showed that the Freundlich model could better predict the adsorption behavior of the process due to having a larger correlation coefficient (R2). The maximum biosorption capacities by Langmuir isotherm model were also obtained 54, 53.5, and 52.4?mg/g for sawdust of palm trees, eucalyptus, and lemon, respectively, which were significant amounts. In addition, kinetic behavior of adsorption showed that pseudo-second-order model can describe the kinetics of the adsorption process better than the pseudo-first-order model. Moreover, kinetic, equilibrium, and thermodynamic behaviors of adsorption affirmed that the biosorption process was desirable, physisorption, spontaneous, and exothermic.  相似文献   

19.
王启刚 《高分子科学》2016,34(6):709-719
In this study, we chose corn stover hemicellulose for the preparation of hydrogels with admirable adsorption properties under mild alkaline conditions. Clay nanosheets were introduced to this system and hemicellulose/clay hybrid hydrogels were prepared. Morphological, mechanical properties and the methylene blue adsorption behaviors of the prepared hydrogels were studied. Results suggested that the addition of clay not only improved the mechanical strength of hemicellulose-based hydrogels, but also increased the adsorption capacity on methylene blue. Moreover, the adsorptions were confirmed to follow pseudo-second order equation for both gels with and without clay. The maximum adsorption capacities on methylene blue for hemicellulose-based hydrogels with or without clay reached 148.8 and 95.6 mg/g, respectively. These results implied that hemicellulose-based hydrogels could be used as promising adsorbents for the removal of methylene blue from waste water.  相似文献   

20.
Adsorption of chromium from aqueous solution using chitosan beads   总被引:1,自引:0,他引:1  
A basic investigation on the removal of Cr(III) and Cr(VI) ions from aqueous solution by chitosan beads was conducted in a batch adsorption system. The chitosan beads were prepared by casting an acidic chitosan solution into an alkaline solution. The influence of different experimental parameters; pH, agitation period and different concentration of Cr(III) and Cr(VI) ions was evaluated. A pH 5.0 was found to be an optimum pH for Cr(III) adsorption, and meanwhile pH 3.0 was the optimum pH for the adsorption of Cr(VI) onto chitosan beads. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherms and isotherm constants for the adsorption of Cr(III) and Cr(VI) onto chitosan beads. Results indicated that Cr(III) and Cr(VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacities of Cr(III) and Cr(VI) ions onto chitosan beads were 30.03 and 76.92 mg g−1, respectively. Results showed that chitosan beads are favourable adsorbents. The Cr(III) and Cr(VI) ions can be removed from the chitosan beads by treatment with an aqueous EDTA solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号