首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An acid-activated montmorillonite-illite type of clay collected from the Gulbarga region of Karnataka, India was examined for removing copper and zinc ions from industrial wastewater containing Cu(II), Zn(II) and minor amounts of Pb(II). Langmuir, Freundlich, Brunauer-Emmett-Teller (BET), and competitive Langmuir (two competing ions) isotherms were fitted to experimental data and the goodness of their fit for adsorption was compared. The shapes of isotherms obtained indicated multilayer adsorption of Cu(II) and monolayer adsorption of Zn(II) on the acid-activated clay. Competitive adsorption was found to be significant due to the presence of Cu(II) in the wastewater.  相似文献   

2.
3.
In this study, the removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions using the adsorption process onto natural bentonite has been investigated as a function of initial metal concentration, pH and temperature. In order to find out the effect of temperature on adsorption, the experiments were conducted at 20, 50, 75 and 90 °C. For all the metal cations studied, the maximum adsorption was observed at 20 °C. The batch method has been employed using initial metal concentrations in solution ranging from 15 to 70 mg L−1 at pH 3.0, 5.0, 7.0 and 9.0. A flame atomic absorption spectrometer was used for measuring the heavy metal concentrations before and after adsorption. The percentage adsorption and distribution coefficients (K d) were determined for the adsorption system as a function of adsorbate concentration. In the ion exchange evaluation part of the study, it is determined that in every concentration range, adsorption ratios of bentonitic clay-heavy metal cations match to Langmuir, Freundlich and Dubinin-Kaganer-Radushkevich (DKR) adsorption isotherm data, adding to that every cation exchange capacity of metals has been calculated. It is shown that the bentonite is sensitive to pH changes, so that the amounts of heavy metal cations adsorbed increase as pH increase in adsorbent-adsorbate system. It is evident that the adsorption phenomena depend on the surface charge density of adsorbent and hydrated ion diameter depending upon the solution pH. According to the adsorption equilibrium studies, the selectivity order can be given as Zn2+>Cu2+>Co2+. These results show that bentonitic clay hold great potential to remove the relevant heavy metal cations from industrial wastewater. Also, from the results of the thermodynamic analysis, standard free energy ΔG 0, standard enthalpy ΔH 0 and standard entropy ΔS 0 of the adsorption process were calculated.  相似文献   

4.
This paper describes the development and validation of a sequential injection (SI) anodic stripping voltammetry (ASV) method using the hanging mercury drop electrode for accumulation of the heavy metal cations Cu(II), Pb(II) and Cd(II). The method was applied to wastewater samples after proper acid digestion in open vessels to eliminate matrix effects. For a deposition time of 90 s at the flow rate of 10 μl s−1, the detection limits of the method were 0.06, 0.09 and 0.16 μmol L−1 for Cd, Pb and Cu, respectively. Under these conditions the linear dynamic range was between 0.20 and 9.0 μmol L−1 and the sampling frequency was 30 analyses per hour. The relative standard deviation of the method was 3%(n=7) at the concentration level of 2.0 μmol L−1. The accuracy of the method was evaluated by spiking the samples with known amounts of the metal cations, and by comparison with an independent analytical technique, the inductively coupled plasma atomic emission spectroscopy (ICP-AES). Average recoveries were around of 84%, and the results showed no evidence of systematic errors in comparison to the ICP-AES.  相似文献   

5.
The contamination of lead in wastewater causes water quality problems, which is toxic to aquatic organisms and environment, so wastewater treatment is required before discharging to receiving water. Chicken eggshell powder (CP) and chicken eggshell powder-doped iron (III) oxide-hydroxide (CPF) were synthesized, characterized, and investigated lead removal efficiencies by batch experiments, adsorption isotherms, kinetics, and desorption experiments. The specific surface area and pore volume of CPF were higher than CP, whereas the pore diameter size of CPF was smaller than CP. The phase structures of both materials demonstrated semi-crystalline phases with presenting peaks of calcium carbonate. Their surface morphologies were irregular, rough, and uneven surfaces. In both materials, they detected carbon, calcium, oxygen, OH, NH, CO, CO, and CH. The point of zero charges (pHpzc) of CP and CPF were 4.47 and 4.83. For batch experiments, CPF demonstrated a higher lead removal efficiency than CP because of spending less material dosage and contact time than CP, and both materials had high lead removals at a lead concentration of 50 mg/L by more than 95 %. Thus, the addition of iron (III) oxide-hydroxide helped to increase material efficiency for lead adsorption. CP corresponded to the Langmuir model while CPF corresponded to the Freundlich model. In addition, both materials corresponded to a pseudo-second-order kinetic model relating to a chemisorption process. Moreover, both materials could be reusable for more than 5 cycles for lead adsorption of more than 77 %. Therefore, CPF was a potential material to apply for lead removals in industrial applications.  相似文献   

6.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

7.
Molecularly imprinted polymers (MIPs), prepared by the interaction forces such as forming covalent or non-covalent bonds by crosslinkers and initiators, are new types of specific recognition polymers with particular cavities. This is an ideal class of materials for wastewater treatment because of the particular holes left by the elution process. This review discusses the development process, classification, synthesis principles, systems, and polymerization methods of MIPs. At the same time, the adsorption mechanism of Copper (Cu), Mercury (Hg), Chromium (Cr), Silver (Ag), and Lead (Pb) in the MIPs technique are studied. Finally, some suggestions and prospects for the future development of MIPs are also put forward.  相似文献   

8.
IntroductionSurfacecoatingsaccountforawiderangeofmi crobialorganismsontheearth[1] ,formonthevarioussurfacesundervariedconditions ,andcoverthesur facesofallthematerialsinrivers,lakes ,andwet lands ,suchasrocksandsediments[2 ] .Theyplayadominantroleindeterminingthetransportandulti matefateofcontaminantsinnaturalaquaticenviron ment,whichisduetoinpartthatcontaminantsmustreachandcrosssurfacecoatingsbeforetheycontactthesubstrates[3] .Ithasbeenprovedthatamongthemaincomponentsinsurfacecoatings,mangane…  相似文献   

9.
The adsorption capacities of commercial and Brazilian natural clays were evaluated to test their applications in wastewater control. We investigated the process of sorption of manganese(II) and cadmium(II) present in synthetic aqueous effluents, by calculating the adsorption isotherms at 298 K using batch experiments. The influence of temperature and pH on the adsorption process was also studied. Adsorption of metals was best described by a Langmuir isotherm, with values of Q 0 parameter, which is related to the sorption capacity, corresponding to 6.3 mg g− 1 for K-10/Cd(II), 4.8 mg g− 1 for K-10/Mn(II), 11.2 mg g− 1 for NT-25/Cd(II) and 6.0 mg g− 1 for NT-25/Mn(II). We observed two distinct adsorption mechanisms that may influence adsorption. At the first 5 min of interaction, a cation exchange mechanism that takes place at exchange sites located on (001) basal planes is predominant. This process is inhibited by low pH values. After this first and fast step, a second sorption mechanism can be related to formation of inner-sphere surface complexes, which is formed at edges of the clay. The rate constants and the initial sorption rates correlate positively with temperature in all studied systems, denoting the predominance of a physisorption process. The addition of complexing agents that are incorporated within the K10 structure, enhance metal uptake by the adsorbent. The results have shown that both Cd(II) and Mn(II) were totally retained from a 50 mg L− 1 solution when K10 grafted with ammonium pyrrolidinedithiocarbamate (APDC) was used as adsorbent.  相似文献   

10.
This research study aims to remove hazardous anionic azo dyes (Congo red (CR)) from aqueous solutions via a simple adsorption method using a poly(3-aminobenzoic acid/graphene oxide/cobalt ferrite) nanocomposite (P3ABA/GO/CoFe2O4) as a novel and low-cost nanoadsorbent, as synthesized by a simple and straightforward polymerization method. Typically, 3-aminobenzoic acid (3ABA), as monomer, was chemically polymerized with graphene oxide (GO) and cobalt ferrite (CoFe2O4) in an aqueous acidic medium containing an ammonium persulfate initiator. The adsorbent P3ABA/GO/CoFe2O4 nanocomposite was characterized using various techniques such as Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, energy-dispersive analysis by X-ray and Brunauer–Emmett–Teller, vibrating sample magnetometer, and zeta potential techniques. These techniques confirmed the interaction between the poly(3-aminobenzoic acid) with GO and CoFe2O4 due to the presence of π-π interactions, hydrogen bonding, and electrostatic forces. Herein, the removal efficiency of dye from aqueous solution by the adsorbent was studied according to several parameters such as the pH of the solution, dye concentration, dosage of adsorbent, contact time, and temperature. The adsorption of the dye was fitted using a Langmuir model (R2 between 0.9980 and 0.9995) at different temperatures, and a kinetic model that was pseudo-second order (R2 = between 0.9993 and 0.9929) at various initial concentrations of CR dye. In addition, the data revealed that the P3ABA/GO/CoFe2O4 nanocomposite exhibited a high adsorption capacity (153.92 mg/g) and removal for CR dye (98 %) at pH 5. Thermodynamic results showed the adsorption process was an endothermic and spontaneous reaction. It was found that, in terms of reusability, the P3ABA/GO/CoFe2O4 adsorbent can be used for up to six cycles. In this study, P3ABA/GO/CoFe2O4 nanocomposites were found to be low cost, and have an excellent removal capability and fast adsorption rate for CR from wastewater via a simple adsorption method. Moreover, this adsorbent nanocomposite could be simply separated from the resultant solution and recycled.  相似文献   

11.
In this paper, a novel composite based on the formation of Schiff base on silica nanoparticles was facilely synthesized. Firstly, silica nanoparticles, which contain silanol groups (Si-OH), were modified with (3-aminopropyl)trimethoxysilane. Then, the modified silica reacted with 1-hydroxy-2-acetonaphthone to form a novel Schiff base/silica composite. The synthesized composite was characterized using several tools such as XRD, FT-IR, FE-SEM, N2 adsorption/desorption analyzer, and CHN analyzer. The considerable reduction at 2θ = 21.9° in the intensity of the XRD peak of the composite is owing to the formation of the Schiff base. Also, the observed FT-IR bands in the composite at 3440 and 1604 cm?1 are owing to the stretching and bending vibrations of OH and/or CN, respectively. The FE-SEM images confirmed that the silica includes irregular shapes whereas the composite possesses a flaky surface owing to the formation of the Schiff base. Elemental analysis of the composite demonstrated that the % C, % H, and % N are 15.26, 3.24, and 1.65 %, respectively. The BET surface area and total pore volume of the composite were reduced because the formed Schiff base blocks the pores of silica. The synthesized composite was employed for the efficient removal of Ni(II), Cu(II), Zn(II), and Hg(II) ions from aqueous media. The maximum uptake capacity of the composite toward Cu(II), Hg(II), Zn(II), and Ni(II) ions is 68.630, 50.942, 45.126, and 40.420 mg/g, respectively. The adsorption processes of the studied metal ions were spontaneous, chemical, and well described using the pseudo-second-order kinetic model and Langmuir equilibrium isotherm. The synthesized composite can be successfully regenerated and utilized various times in the removal of studied metal ions from aqueous media.  相似文献   

12.
The coupled transport of Cu(II), Cd(II) and Ni(II) ions through a bulk liquid membrane (BLM) containing pyridine-2-acetaldehyde benzoylhydrazone (2-APBH) as carrier dissolved in toluene has been studied. Once the optimal conditions of extraction of each metal were established, a comparative study of the transport kinetics for these metals was performed by means of a kinetic model involving two consecutive irreversible first-order reactions. The kinetic parameters (apparent rate constants of the metal extraction and re-extraction reactions (k 1, k 2), the maximum reduced concentration of the metal in the liquid membrane (), the time of the maximum value of R o ( t max) and the maximum entry and exit fluxes of the metal through the liquid membrane ( and ) of the extraction and stripping reactions were evaluated and results showed good agreement between experimental data and theoretical predictions. Complete transport through the membrane took place according to the following order: Cd(II)>Cu(II)>Ni(II), with similar kinetic parameters obtained for Cu(II) and Cd(III). The transport behaviour of Ni(II) was different to that of Cu(II) and Cd(III), probably due to the different stoichiometry of the nickel complex compared to those of the other metal ions and the different chemical conditions required for its formation. The influence of the sample salinity on the transport kinetics was studied. k 1 values decreased slightly when the feed solution salinity was increased for Cu(II) and Ni(II), but not for Cd(II). Values of k 2 were practically unaffected. The proposed BLM was applied to the preconcentration and separation of metal ions (prior to their determination) in water samples with different saline matrices (CRM, river water and seawater), and good agreement with the certified values was obtained.  相似文献   

13.
The effects of the concentration of NaOH on the formation and transformation of various titanate nanostructures were studied. With increasing NaOH concentration, three different formation mechanisms were proposed. Nanotubes can only be obtained under moderate NaOH conditions, and should transform into nanowires with prolonged hydrothermal treatment, and their formation rate is accelerated by increasing NaOH concentration. Low concentration of NaOH results in the direct formation of nanowires, while extra high concentration of NaOH leads to the formation of amorphous nanoparticles. Adsorption and photocatalysis studies show that titanate nanowires and nanotubes might be potential adsorbents for the removal of both heavy metal ions and dyes and photocatalysts for the removal of dyes from wastewater.  相似文献   

14.
Biosorption of Cu2+ and Pb2+ by Cladop- hora fascicularis was investigated as a function of initial pH, initial heavy metal concentrations, temperature and other co-existing ions. Adsorption equilibriums were well described by Langmuir and Freundlich isotherm models. The maximum adsorption capacities were 1.61 mmol/g for Cu2+ and 0.96 mmol/g for Pb2+ at 298 K and pH 5.0. The adsorption processes were endothermic and biosorption heats calculated by the Langmuir constant b were 39.0 and 29.6 kJ/mol for Cu2+ and Pb2+, respectively. The biosorption kinetics followed the pseudo-second order model. No significant effect on the uptake of Cu2+ and Pb2+ by co-existing cations and anions was observed, except EDTA. Desorption experiments indicated that Na2EDTA was an efficient desorbent for the recovery of Cu2+ and Pb2+ from biomass. The results showed that Cladophora fascicularis was an effective and economical biosorbent material for the removal and recovery of heavy metal ions from wastewater.  相似文献   

15.
《印度化学会志》2022,99(11):100763
Human health is seriously harmed by the consumption of poor-quality water. Due to high toxicity and water solubility, heavy metals are present in wastewater discharged from numerous industries. In the environmental realm, metal-containing water must be treated before being released. A dendrimer is a superior adsorbent for the removal of heavy metal ions due to its nanostructure and hydrophilic end group. In this work, a novel triazine-based hydroxy-terminated dendrimer up to generation three is designed employing a carbamide core. The dendrimer's structure was explored using FT-IR and 1H NMR studies. Full generation dendrimers UG1.0, UG2.0, and UG3.0 were utilized as an adsorbent for Pb2+, Ni2+, Co2+ and Zn2+ metal ion removal from water in a series of tests. The ability of dendrimers to uptake Pb2+, Ni2+, Co2+ and Zn2+ metal ions was investigated under various pH, time interval and dendrimer generation parameters. The presence of metal in the dendrimer was confirmed by FT-IR studies of dendrimer-metal complexes. The overall results show that Pb2+, Ni2+, Co2+ and Zn2+ metal ions uptake increases with the generation, time, and pH.  相似文献   

16.
The sorption activity of UVIS-AK activated carbon fiber with respect to the Co(II), Ni(II), and Cu(II) cations was studied. The possibility of using this fiber for industrial wastewater treatment to remove heavy metal ions was examined.  相似文献   

17.
Thermodynamic data on interaction of Cu(II), Ni(II), and Co(II) with silica modified with ethyleneimine are obtained by calorimetric titration. The amount of ethyleneimine anchored on silica surface was estimated to be 0.70 mmol g−1. The enthalpies of binding Ni(II), Cu(II) and Co(II), are −3.59 ± 0.001, −4.88 ± 0.001, and −7.75 ± 0.003 kJ mol−1, respectively.  相似文献   

18.
A study has been made of the influence of Co(II) and Ni(II) ions on the kinetics of the homogeneous reduction of gem-dichlorocyclopropanes by anthracene anion radicals. It has been shown that Co(II) and Ni(II) ions accelerate this process. The observed effect depends on the nature and concentration of the metal ion and also on the type of gem-dichlorocyclopropane. Two mechanisms are examined: 1) homogeneous reduction of metal ions by anthracene anion radicals with the formation of univalent and zero-valent metals that are more effective reducting agents; and 2) activation of a dichlorocyclopropane molecule by previous coordination with a metal ion.A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan' Scientific Center, Russian Academy of Sciences, 420083 Kazan'. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 2, pp. 292–297, February, 1992.  相似文献   

19.
Facile synthesis of two 2-anthracene ammonium-based magnetic ionic liquids (MILs), 2-anthracene ammonium tetrachloroferrate (III) ([2A-A]FeCl4) and 2-anthracene ammonium trichlorocobaltate (II) ([2A-A]CoCl3) was performed by protonation of 2-aminoanthracene, followed complexation with FeCl3/CoCl2. The MILs were tested in the adsorptive removal of Cd2+, As3+, Pb2+ and Cr3+ from water sources. Upon treatment with 10 mg dosage of MILs in 10 mL aqueous solution of 50 ppm each of Cd2+, As3+, Pb2+ and Cr3+, adsorption capacity (mg/g) in the range of 5.73–55.5 and 23.6–56.8 for [2A-A]FeCl4 and [2A-A]CoCl3 respectively were recorded. Thus, the optimization, kinetic and isotherms studies were conducted using the [2A-A]CoCl3 adsorbent. The [2A-A]CoCl3 was more effective in pH 7–9, and equilibrium adsorption was achieved after 60 min contact time. The adsorption process proceeded via the Pseudo-second order pathway and the Langmuir isotherm model is the best fit for the adsorption process (with qmax = 227 – 357 mg/g) of all the targeted metal ions. The [2A-A]CoCl3 adsorbent demonstrated practicality with large distribution and selectivity coefficients of the targeted ions, and up to six times regeneration.  相似文献   

20.
The reaction of ethylene sulfide with 3-aminopropyltrimethoxysilane gave a new silylating agent, which was anchored onto a silica surface via the sol–gel procedure. This surface displayed a chelating moiety containing nitrogen and two sulfur basic centers potentially capable of extracting cations from aqueous solutions. The process of metal extraction was followed by a batch method, and fitted to a modified Langmuir equation. The maximum adsorption capacities found were: 2.06 ± 0.01, 3.72 ± 0.02, and 5.14 ± 0.02 mmol g−1 for Pb(II), Cd(II), and Hg(II), respectively. The enthalpies of bending are: −1.16 ± 0.04, −3.60 ± 0.10, and −8.94 ± 0.03 kJ mol−1 for Cd(II), Pb(II), and Hg(II), respectively. The Gibbs free energies of binding agree with the spontaneity of the proposed reactions between cations and basic centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号