首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, Seven new complexes incorporating (E)-2-(((5-([2-hydroxyphenoxy]methyl)furan-2-yl)methylene)amino)phenol derived from 2-hydroxyphenoxymethylfuran-5-carbaldehyde and 2-aminophenol have been synthesized using Cu(II), Cr(III), Fe(III), Ni(II), Co(II), Zn(II), and Pt(IV) metal salts. Thermal measurements, molar conductance, magnetic moment, elemental analyses, spectral (IR, UV–Vis, 1H nuclear magnetic resonance (NMR), ESR, Mass), were used to characterize insulated solid complexes. The thermogravimetry (TG) and differential thermoanalysis (DTA) of the complexes were carried out in the range of 30–900°C. Magnetic susceptibility and electronic spectral data, as well as quantum chemical calculations, reveal the square planar geometry for Ni (II) complex, square planar/octahedral geometry for Cu (II) complex, while Co(II), Zn(II), Cr(III), Fe(III), and Pt (IV) complexes are octahedral geometry. Density functional theory (DFT) studies revealed that geometries of metal complexes and Schiff base were entirely optimized in relation to use energy by 6–31 + g (d,p) basis set. The complexes show a well-defined crystal system indicated by a powder-X-ray diffraction pattern. The scanning electron microscope showed complexes were nanocrystalline in nature, in addition to the interaction of the complexes with calf thymus CT-DNA, which was investigated via the UV–visible absorption method. Therefore, the DNA cleavage activity by the H2L ligand and its metal complexes was performed. Finally, the synthesized complexes were tested for their in-vitro antimicrobial efficacy.  相似文献   

2.

Reaction of the ligand 2,2′-diphenyl-4,4′-bithiazole (DPBTZ) with Hg(SCN)2, Tl(NO3)3, CuCl, and PdCl2 gives complexes with stoichiometry [Hg(DPBTZ)(SCN)2], [Tl(DPBTZ)(NO3)3], [Cu(DPBTZ)(H2O)Cl], and [Pd(DPBTZ)Cl2]. The new complexes were characterized by elemental analyses and infrared spectroscopy. The crystal structure of [Hg(DPBTZ)(SCN)2] determined by X-ray crystallography. The Hg atom in the title monomeric complex, (2,2′-diphenyl-4,4′-bithiazole)mercury(II)bisthiocyanate, [Hg(C18H12N2S2)(SCN)2], is four-coordinate having an irregular tetrahedral geometry composed of two S atoms of thiocyanate ions [Hg-S 2.4025(15) and 2.4073(15) Å] and two N atoms of 2,2′-diphenyl-4,4′-bithiazole ligand [Hg-N 2.411(4) and 2.459(4) Å]. The bond angle S(3)-Hg(1)-S(4) of 147.46(5)° has the greatest derivation from ideal tetrahedral geometry. Intermolecular interaction between Hg(1) and two S atoms of two neighboring molecules, 3.9318(15) and 3.9640(18) Å, make the Hg(1) distort from a tetrahedron to a disordered octahedron. The attempts for preparation complexes of Tl(I), Pb(II), Bi(III), Cd(II) ions with 2,2′-diphenyl-4,4′-bithiazole ligand were not successful and also the attempts for preparation complexes of 4,4′,5,5′-tetraphenyl-2,2′-bithizole ligand with Cu(II), Ni(II), Co(II), Co(III), Mn(II), Mn(III), Fe(II), Fe(III), Cr(III), Zn(II), Tl(III), Pb(II), Hg(II), Cu(I), Pd(II) were not successful. This point can be regarded as the initial electron withdrawing of phenyl rings and also their spatial steric effects.  相似文献   

3.
Three novel Cr(III),VO(II) and Ni(II) imine complexes derived from the condensation of 2‐aminophenol (AP) with 2‐hydroxynaphthaldehyde (HN) were synthesized. The prepared HNAP imine ligand and its complexes were investigated via various physicochemical tools. The results suggest that the parent ligand behaves as a dibasic tridentate ONO ligand, when coordinated to Cr(III) in octahedral and to Ni(II) in tetrahedral geometry. In the case of VO(II), it coordinates in distorted square pyramidal geometry. Also, the prepared compounds were screened for their antimicrobial activities against pathogenic bacteria, Escherichia coli (−ve), Bacillus subtilis (+ve) and Staphylococcus aureus (+ve), and some types of fungi, Aspergillus niger , Candida glabrata and Trichophyton rubrum . The results indicate that the complexes show a stronger antimicrobial efficiency compared to the pro‐ligand. The interaction of the prepared complexes with calf thymus DNA was investigated using spectral, viscosity and gel electrophoresis measurements. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order HNAPCr > HNAPV > HNAPNi. The cytotoxic activity of the prepared compounds on human colon carcinoma cells (HCT‐116 cell line), hepatic cellular carcinoma cells (HepG‐2cell line) and breast carcinoma cells (MCF‐7cell line) was examined. From these results it is found that the investigated complexes have potent cytotoxicity against growth of carcinoma cells compared to the corresponding imine pro‐ligand.  相似文献   

4.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

5.
This study was conducted to prepare novel azomethine chelates of Cu(II), Pd(II), Zn(II) and Cr(III) with tridentate dianionic azomethine OVAP ligand 2‐[(2‐hydroxyphenylimino)methyl]‐6‐methoxyphenol. The prepared compounds were characterized using elemental analyses and spectral, conductivity, magnetic and thermal measurements. The spectroscopic data suggest that the parent azomethine ligand binds to the investigated metal ions through both deprotonated phenol oxygen and azomethine nitrogen atoms, and adopts distorted octahedral geometry in the case of Cr(III) and Cu(II) ions while tetrahedral and square planar geometries for Zn(II) and Pd(II) ions, respectively. In order to confirm the molecular geometry of the investigated azomethine chelator and its complexes, theoretical density functional theory calculations were employed. Correlation between experimental observations and theoretical calculations of geometry optimization results are in a good agreement. Absorption titration was used to explore the interaction of the investigated azomethine metal chelates with calf thymus DNA, and the binding constant as well as Gibbs free energy were evaluated. Viscosity measurements and gel electrophoresis studies suggest intercalative and replacement binding modes of the azomethine metal chelates with calf thymus DNA. Additionally, the antimicrobial activity of the complexes was screened against some pathogenic bacteria and fungi. This biological study shows that the complexes exhibit a marked inhibitory effect compared to the corresponding ligand and standard drug s. Furthermore, the effect of the novel compounds as antioxidants was determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C. Finally, in vitro cell proliferation via MTT assay was investigated against colon carcinoma cells (HCT‐116), hepatic cellular carcinoma cells (HepG‐2(and breast carcinoma cells (MCF‐7) to calculate the cytotoxicity of the prepared compounds. Cell proliferation is inhibited for all compounds and in a dose‐dependent manner in the sequence of OVAPPd > OVAPCu > OVAPZn > OVAPCr > OVAP azomethine ligand.  相似文献   

6.
New complexes of Co(II), Ni(II), Cu(II), and Zn(II) with new Schiff bases derived by the condensation of p-aminoacetophenoneoxime with 5-methoxysalicylaldehyde are synthesized. The compounds are characterized by elemental analyses, magnetic susceptibility measurements, IR, 1H and 13C NMR spectra, electronic spectral data, and molar conductivity. The thermal stabilities of the compounds are also reported. The Schiff base acts as bidentate O,N-donor atoms, and their metal complexes are supposed to possess a tetrahedral geometry with respect to the central metal ion. The general formula of the 5-methoxysalicyliden-p-aminoacetophenoneoxime Co(II), Ni(II), Cu(II), and Zn(II) complexes is Co(L)2, Ni(L)2, Cu(L)2, and Zn(L)2.  相似文献   

7.
In this work, (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid and its Mn(II), Co(II), Cu(II) and Cd(II) complexes were introduced for the first time. This carbonyl thiourea ligand was prepared by the reaction of 1H‐1,2,4‐triazol‐3‐amine with benzoyl isothiocyanate. The structural elucidation of these compounds was performed using elemental analysis and spectral and magnetic measurements. Octahedral structures of all complexes, except Cd(II) complex with a tetrahedral geometry, were confirmed by applying DFT structural optimization. The thermal decomposition behaviour of metal complexes of carbonyl thiourea ligand is discussed. The calculation of kinetic parameters for prepared complexes (Ea, A, ΔH*, ΔS* and ΔG*) of all thermal degradation stages has been evaluated using two comparable approaches. Antimicrobial and ABTS‐antioxidant studies indicated potent activity of Cd(II) complex compared with the other investigated compounds. The cytotoxic activity of the prepared compounds was investigated in vitro. The results indicated potent activity of Mn(II) complex against both HePG2 (liver carcinoma) and MCF‐7 (breast carcinoma) cancer cells.  相似文献   

8.
Octahedral complexes of the general composition [M(II)(BAMQH)2]X2 (where M = Cu(II), Ni(II), Co(II); X = Cl, I, ClO4 and BAMQH is biacetalmonoquinolylhydrazone); [M(II)(BAMQH)Cl2.H2O] (where M = Mn(II), Fe(III)) and penta-coordinated [VO(BAMQH)2]SO4 have been synthesized and characterized by magnetic susceptibility, optical and ESR studies in the polycrystalline and frozen states. [Ni(II)(BAMQH)2]Cl2 has tetrahedral geometry. Bidentate nature of the ligand is assumed in [Ni(II)(BAMQH)2]Cl2 and [VO(BAMQH)2]SO4 complexes.  相似文献   

9.
The Schiff base ligand, pyrral-l-histidinate(L) and its Co(II), Ni(II), Cu(II) and Zn(II) complexes were synthesized and characterized by elemental analysis, mass, molar conductance, IR, electronic, magnetic measurements, EPR, redox properties, thermal studies, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR data show that the ligand is tridentate and the binding sites are azomethine nitrogen, imidazole nitrogen and carboxylato oxygen atoms. Electronic spectral and magnetic measurements indicate tetrahedral geometry for Co(II) and octahedral geometry for Ni(II) and Cu(II) complexes, respectively. The observed anisotropic g values indicate the presence of Cu(II) in a tetragonally distorted octahedral environment. The redox properties of the ligand and its complexes have been investigated by cyclic voltammetry. Thermal decomposition profiles are consistent with the proposed formulations. The powder XRD and SEM studies show that all the complexes are nanocrystalline. The in vitro biological screening effects of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species, Aspergillus niger, Aspergillus flavus and Candida albicans by the disc diffusion method. The results indicate that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence and absence of H2O2.  相似文献   

10.
Eight new macrocyclic complexes were synthesized by template reaction of 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane with metal nitrate and 1,2-bis(2-formylphenyl)ethane and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, molar conductivity measurements, 1H NMR and mass spectra. The metals to ligand molar ratios of the complexes were found to be 1: 1. The complexes are 1: 2 electrolytes for Cd(II), Pb(II) and Zn(II) complexes and 1: 3 electrolytes for La(III) as shown by their molar conductivities (Λm) in DMSO at 10−3 mol L−1. Due to the existence of free ions in these complexes, such complexes are electrically conductive. The configurations of Cd(II) and Zn(II) complexes were proposed to probably tetrahedral, La(III) complexes are octahedral and Pb(II) complexes are octahedral geometry in the L1 complex and tetrahedral geometry in the L2 complex.  相似文献   

11.
This article describes the synthesis, structural aspects and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of a new hydrazone derived from the condensation of isatin and 2‐aminobenzoylhydrazide. The ligand is well characterized using 1H NMR, 13C NMR, 2D HETCOR, mass and IR spectral studies. The chelating tendency of the ligand towards transition metal ions is established using analytical and spectral studies, which reveal the monobasic tridentate nature of the ligand. Octahedral geometry for Co(II), Cu(II) and Zn(II) and tetrahedral geometry for Ni(II) are tentatively proposed. All the synthesized compounds were screened for in vitro anticancer activity against Ehrlich ascites carcinoma and human cancer cell lines (adenocarcinoma HT29, kidney cancer cell line K293 and breast cancer cell line MDA231) using tryphan blue exclusion method and MTT assay. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV–Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.  相似文献   

13.
The work reported the synthesis and characterisation of Fe2+, Co2+, and Ni2+ complexes of 2-(4,6-dihydroxypyrimidin-2-ylamino)naphthalene-1,4-dione (HL). The spectroscopic and elemental analysis results obtained were consistent with the adoption of the formulas, [ML2] (M = Fe and Co) and [ML2(H2O)] (M = Ni) for the metal complexes. Electronic spectra and magnetic moments of the metal complexes corroborated octahedral geometry for Ni(II) complex and tetrahedral geometry for Fe(II) and Co(II) complexes. However, quantum-chemical calculations using density functional theory predicted trigonal bipyramidal geometry for Ni(II) complex and provided corroborative explanations for the structures of the other complexes. Conductance measurements in dimethylsulfoxide indicate that the complexes are non-electrolytes. The antimicrobial potential of the compounds was evaluated against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Proteus mirabilis, Klebsiella oxytoca, Aspergillus niger, A. flavus, and Rhizopus stolonifer. The compounds gave moderate to good antimicrobial activity. However, the bacterial and fungal organisms were more susceptible to the cobalt complex and ligand respectively than the other compounds at concentration of 10 mg/mL. The compounds were also assessed for their antioxidant potential using 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The compounds displayed good DPPH radical scavenging activities. The nickel complex exhibited the best DPPH radical scavenging activity compared to the other compounds.  相似文献   

14.
Schiff base ligand (H3L) was prepared from the condensation reaction of protochatechualdehyde (3,4-dihydroxybenzaldhyde)with 2-amino phenol. From the direct reaction of the ligand (H3L) with Co(II), Ni(II) and Cu(II) chlorides, and Fe(III)and Zn(II)nitrates in 2?M/1?L molar ratio, the five new neutral complexes were prepared. The characterization of the newly formed compounds was done by 1H NMR, UV?CVis, and IR spectroscopy and elemental analysis. The in vitro antibacterial activity of the metal complexes was studied and compared with that of free ligand.  相似文献   

15.
New complexes, [Fe(L)Cl], [Ni(L)], and [Zn(L)C2H5OH] (1–3), were synthesized by template reaction of 2-hydroxy-acetophenone-S-methyl-thiosemicarbazone with 2-hydroxy-benzaldehyde. The compounds were characterized by elemental analysis, magnetic measurements, FT-IR, 1H NMR, UV–visible, and ESI–MS spectra. In these complexes, the ligand is coordinated to the metal ion as dinegatively charged tetradentate chelating agents via the N2O2 donor set. The iron(III) and zinc(II) complexes exhibit square pyramidal geometry whereas the nickel(II) complex has a square planar geometry. The crystal structure of 1, determined by X-ray diffraction method, indicates that 1 crystallizes in the monoclinic space group P21/c with Z = 4. Thermal decompositions of the compounds have been investigated using TGA in air.  相似文献   

16.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies.  相似文献   

17.
Complexes of sulfamethoxydiazine with Cu(II), Zn(II), Ni(II), Cd(II), Cr(III) and Fe(III) have been synthesized and characterized on the basis of conductivity measurements, elemental analyses, UV, IR, 1H?NMR and thermal studies. It is shown that sulfamethoxydiazine behaves as a bidentate ligand, binding the metal ion through the sulfonyl oxygen and sulfonamide nitrogen. In vitro susceptibility tests of these complexes against Escherichia coli, Bacillus subtilis, Proteus vulgaris and Staphylococcus aureus were carried out. The results show that the antibacterial activities of the complexes of Zn(II), Cu(II), Cr(III) and Fe(III) are, in general, stronger than that of sulfamethoxydiazine, while the complexes of Cd(II) and Ni(II) are less active.  相似文献   

18.
In recent years, metals based antitumor complexes have played a vital role in chemotherapy. Therefore, in this study, some new imine Cr(III), VO(II) and Ni(II) complexes incorporating ESAP imine ligand (2-Ethoxy-6-((2-hydroxy-phenylimino)-methyl)-phenol were designed and synthesized. The investigated complexes were fully characterized by micro analysis, infrared, electronic spectra, thermal analysis (TGA), conductivity as well as magnetic susceptibility measurements. Moreover, the stability constants of the prepared complexes were determined spectrophotometrically. The results suggest that the titled ESAP imine ligand serves as tri-dentate moiety through deprotonated two phenolic oxygen and azomethene nitrogen atoms for coordination to Cr(III) in octahedral geometry, tetrahedral to Ni(II) and distorted square pyramidal to VO(II). The electronic structure and nonlinear optical parameters NLO of the newly synthesized complexes are investigated theoretically at the B3LYP/GEN level of theory. The studied complexes show promising optical properties. Indeed, the prepared compounds were evaluated for antimicrobial effect against some types of bacteria and fungi. The investigated complexes exhibit a stronger antimicrobial efficiency compared to its ligand. Moreover, the interaction of the complexes with CT-DNA was monitored using spectral studies, viscosity and gel electrophoreses measurements. Furthermore, the cytotoxic activity of the prepared imine complexes on human colon carcinoma cells, hepatic cellular carcinoma cells and breast carcinoma cells have shown promising results and enhancement of the anti-proliferative activity compared to its ligand. The molecular docking into TRK (PDB: 1t46) was done for the optimization of the investigated compounds as potential TRK inhibitors.  相似文献   

19.
The Schiff base ligand was prepared from 4-aminoantipyrine, acetamide, and m-phenylenediamine. Metal salts used for the synthesis of these complexes are Co(II), Ni(II), Cu(II), and Zn(II) acetates. The elemental analysis results are in accordance with proposed formula assigned to these complexes. In the IR spectra, the imine band is shifted to a lower wave number in the complexes. UV spectra and magnetic susceptibility measurements proposed square planar geometry for Co(II), Ni(II), and Cu(II) complexes and tetrahedral geometry for Zn(II) complex. The grain size of the metal complexes was estimated by the Scherrer formula using powder XRD. In the present study, the ligand and its metal complexes are found to be nanocrystalline. Thermal decomposition pattern is in agreement with the proposed formula of the complexes. Irreversible redox behavior of the complex was identified by cyclic voltammetric analysis. The photocatalytic activity of the synthesized complexes are high under UV-spectra using methylene blue dye. DNA studies reveal that the synthesized complexes exhibit both DNA cleavage and DNA binding properties. Antibacterial and antifungal activities were done by the minimum inhibitory concentration (MIC) method. Anticancer activity shows that Cu(II) complex has the highest cytotoxic effect in SK-MEL-28 cell line.  相似文献   

20.
Four new complexes of Au(III), Pd(II), Ni(II), and Cu(II) ions were synthesized, derived from a novel heterocyclic ligand (L) that has both triazole and tetrazole rings. The ligand synthesis was through successive steps to achieve both heterocyclic rings. The synthesized compounds were characterized using conventional techniques like infrared, ultra violet—visible and proton/carbon nuclear magnetic resonance spectroscopy, metal and thermal analyses, and molar conductivity. All complexes were suggested to have square planar geometry, gold, nickel, and palladium complexes were salts while copper neutral complexes have the chemical formulas; [AuL2]Cl.2H2O, [PdL2]Cl2.2H2O, [NiL2]Cl2.2H2O, and [CuL2]. The cytotoxic effect was studied on breast cancer cell line (MCF‐7 cell line) at different concentrations by using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay method, for the ligand (L) and complexes. The results showed that gold(III) and nickel(II) complexes have the highest cytotoxicity among all compounds against cancer cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号