首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nowadays, sustainable supplement of water has recently been identified as a vital necessity due to the existence of limited drinkable water sources. To do this, various techniques are being developed to remove various types of pollutants from water/wastewater sources. Adsorption of common water pollutants using nanocomposite materials has been of great popularity in recent years due to its high efficiency. This paper aims to develop various models based on machine learning approach to study their efficiency on predicting the experimentally measured results of Hg/Ni ions removal from water sources. To do this, this study attempts regression on a small data set using two parameters as inputs and two parameters as outputs. In this dataset, the inputs are Ion and C0, and the outputs are Ce and Qe. AdaBoost (Adaptive Boosting), a well-known ensemble method, was applied on top of three different models, including Decision Tree Regression (DT), Gaussian Process Regression (GPR), and Linear Regression (LR). After fine-tuning their hyper-parameters, the optimized model was evaluated through various metrics. For example, the R2 for ADA + GPR model has a score of 0.998 for Ce and 0.999 for Qe as the best model among these three models. This model in RMSE is the best and illustrates 0.1512 and 1.490 for Ce and Qe as error. Eventually, ADA + GPR has been selected as the optimized model with optimized dataset: (Ion = Ni, C0 = 250, Ce = 206.0). But for Qe, different amounts are illustrated: (Ion = Hg, C0 = 106.7, Ce = 577.35)  相似文献   

2.
Nowadays, supercritical fluid technology (SFT) has been an interesting scientific subject in disparate industrial-based activities such as drug delivery, chromatography, and purification. In this technology, solubility plays an incontrovertible role. Therefore, achieving more knowledge about the development of promising numerical/computational methods of solubility prediction to validate the experimental data may be advantageous for increasing the quality of research and therefore, the efficacy of novel drugs. Decitabine with the chemical formula C8H12N4O4 is a chemotherapeutic agent applied for the treatment of disparate bone-marrow-related malignancies such as acute myeloid leukemia (AML) by preventing DNA methyltransferase and activation of silent genes. This study aims to predict the optimum value of decitabine solubility in CO2SCF by employing different machine learning-based mathematical models. In this investigation, we used AdaBoost (Adaptive Boosting) to boost three base models such as Linear Regression (LR), Decision Tree (DT), and GRNN. We used a dataset that has 32 sample points to make solubility models. One of the two input features is P (bar) and the other is T (k). ADA-DT (Adaboost Algorithm-Decision Tree), ADA-LR (Adaboost Algorithm-Linear Regresion), and ADA-GRNN (Generative Regression Neural Network) models showed MAE of 6.54 × 10?5, 4.66 × 10?5, and 8.35 × 10?5, respectively. Also, in terms of R-squared score, these models have 0.986, 0.983, and 0.911 scores, respectively. ADA-LR was selected as the primary model according to numerical and visual analysis. Finally, the optimal values are (P = 400 bar, T = 3.38 K × 102, Y = 1.064 × 10?3 mol fraction) using this model.  相似文献   

3.
Colourless, water- and air-stable single crystals of cerium(III) oxoarsenate(III) Ce[AsO3] were prepared by the reaction of cerium metal (Ce) and arsenic sesquioxide (As2O3) in the presence of cesium chloride (CsCl) as fluxing agent at 750 °C in an evacuated silica ampoule. Ce[AsO3] crystallizes monoclinically (a = 902.89(8), b = 782.54(7), c = 829.68(7) pm, β = 103.393(3)°, Z = 8) in the space group P21/c and is isotypic with α-Pb[SeO3]. There are two crystallographically different Ce3+ positions. (Ce1)3+ is coordinated by nine oxygen atoms (d(Ce–O) = 244–286 pm) and (Ce2)3+ by only eight (d(Ce–O) = 239–273 pm). Both crystallographically different As3+ cations form discrete ψ1 tetrahedra [AsO3]3− (d(As–O) = 174–179 pm), which are attached to the Ce3+ cations via edges and corners. The second monoclinic modification of Ce[AsO3] with the lattice parameters a = 439.32(4), b = 529.21(5), c = 617.34(6) pm and β = 105.369(3)° with Z = 2 was obtained by high-pressure synthesis (11 GPa, 1200 °C) and has both a higher density (6.31 vs. 6.13 g · cm−3) and a higher calculated Madelung part of the lattice energy (15,155 vs. 15,132 kJ · mol−1). It adopts the space group P21/m, crystallizing isotypically with La[AsO3], β-Pb[SeO3], Pb[SO3] (scotlandite) or K[ClO3] and exhibits nine-fold coordinated Ce3+ cations exclusively (d(Ce–O) = 254–287 pm) along with tripodal [AsO3]3− anions (d(As–O) = 175–176 pm). Raman spectroscopy on both phases of Ce[AsO3] shows stretching vibrations between 769 and 731 cm−1 as well as asymmetric vibrations in the range of 659–617 cm−1. The symmetric bending mode vibrations emerge in an interval from 340 to 410 cm−1 and the asymmetric bending modes range between 230 and 290 cm−1.  相似文献   

4.
New bimetallic complex salts corresponding to the formulation [Ni(L)][MCl4] have been synthesized by the facile reaction between [Ni(L)](ClO4)2 and [MCl2(PPh3)2] in high yields {where M = Co(II), Zn(II), Hg(II) and L = 3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane}. The complexes were characterized by IR, electronic spectra, TGA/DSC, magnetic moment and conductivity measurements. The X-ray crystal structure for [Ni(L)][CoCl4] clearly establishes the cationic–anionic interaction. It crystallizes in the space group P1 with unit cell dimensions a = 7.1740(15) Å, b = 8.1583(16) Å and c = 8.3102(16) Å. A square-planar geometry is evident for the [Ni(L)]2+ cation while the anion is found to be tetrahedral. A two-step thermolytic pattern is observed in the pyrolysis of the bimetallic complex salts.  相似文献   

5.
《Comptes Rendus Chimie》2015,18(3):293-301
Dry reforming of methane has been carried out on SBA-15 catalysts containing 5 wt% Ni and 6 wt% Ce. The effect of the order of Ni and Ce impregnation on the catalytic activity has been studied. Both metals were added using the “two-solvent” method that favors metal dispersion inside the pores. Characterizations by XRD (low and high angles), N2 sorption, SEM and TEM of the materials after metal addition and calcination indicate good preservation of the porosities and high NiO and CeO2 dispersion inside the porous channels. Reduction was carried out before the catalytic tests and followed by TPR measurements. The most active reduced catalyst was the Ni–Ce/SBA-15 sample prepared by impregnating cerium first, then nickel. All catalysts were highly active and selective towards H2 and CO at atmospheric pressure. Full CH4 conversion was obtained below 650 °C. The higher performances compared to those reported in the literature for mesoporous silica with supported Ni and Ce catalysts are discussed.  相似文献   

6.
We report an experimental study by optical absorption, photoluminescence and Raman spectroscopies of the modifications induced on Ce–Ti-Eu doped SiO2 glasses by thermal treatments in controlled atmosphere. Samples with Ce content varying up to 5,000 part per million by weight (ppm) and with Ti and Eu content fixed at 40 and 300 ppm respectively, have been investigated. The treatments were done in inert atmosphere of He and in O2 atmosphere at 390°C and 100 bar. Our experiments show that only Ce4+ ions are affected by He treatments, whereas both Ce4+ and Ce3+ ions are affected by O2 treatments. The obtained results are interpreted on the basis of microstructural changes induced by the thermal treatments on Ce sites and by the occurrence of an oxidizing process.  相似文献   

7.
8.
《中国化学快报》2021,32(11):3435-3439
A facile hydrothermal method was applied to gain stably and highly efficient CuO-CeO2 (denoted as Cu1Ce2) catalyst for toluene oxidation. The changes of surface and inter properties on Cu1Ce2 were investigated comparing with pure CeO2 and pure CuO. The formation of Cu-Ce interface promotes the electron transfer between Cu and Ce through Cu2+ + Ce3+ ↔ Cu+ + Ce4+ and leads to high redox properties and mobility of oxygen species. Thus, the Cu1Ce2 catalyst makes up the shortcoming of CeO2 and CuO and achieved high catalytic performance with T50 = 234 °C and T99 = 250 °C (the temperature at which 50% and 90% C7H8 conversion is obtained, respectively) for toluene oxidation. Different reaction steps and intermediates for toluene oxidation over Cu1Ce2, CeO2 and CuO were detected by in situ DRIFTS, the fast benzyl species conversion and preferential transformation of benzoates into carbonates through C=C breaking over Cu1Ce2 should accelerate the reaction.  相似文献   

9.
Zusammenfassung Die Dreistoffe Ce–Th(U)–Si werden mittels gesinterter Proben röntgenographisch untersucht. Aus Schmelzpunktsmessungen und Gefügebeobachtung wird ein vorläufiges Zustandsschaubild von Cer-Silicium aufgestellt. Neben den bereits bekannten Phasen Ce3Si2, CeSi, CeSi<2 und CeSi2 werden zwei neue Verbindungen gefunden: Ce2Si und Ce1,2Si. Der U3Si2-Typ für Ce3Si2 wird bestätigt, die Gitterparameter werden ermittelt. Der Dreistoff Ce–Th–Si ist durch das Auftreten der lückenlosen Mischreihen (Ce,Th)3Si2, (Ce,Th)Si und (Ce,Th)Si2 gekennzeichnet. Im Gegensatz dazu sind im System Ce–U–Si die gegenseitigen Löslichkeiten der Ce- bzw. U-Silicide gering.
X-ray studies were carried out within the ternary system Ce–Th(U)–Si using sintered specimens. A preliminary phase diagram of the binary system cerium-silicon has been established on the basis of additional metallographic findings and melting point measurements. Besides the already described phases Ce3Si2, CeSi, CeSi<2 and CeSi2 two new compounds Ce2Si and Ce1,2Si have been detected. The crystal structure of Ce3Si2 has been confirmed, the lattice parameter being determined. The ternary system Ce–Th–Si is characterized by the presence of three continuous solid solution series (Ce,Th)3Si2, (Ce,Th)Si and (Ce,Th)Si2. By contrast the mutual solubility of the Ce- and U-silicides in the system Ce–U–Si is low.


Mit 7 Abbildungen  相似文献   

10.
The new Mannich bases bis(1,4-diphenylthiosemicarbazide methyl) phosphinic acid H3L1 and bis(1,4-diphenylsemicarbazide methyl) phosphinic acid H3L2 were synthesised from the condensation of phosphinic acid, formaldehyde with 1,4-diphenyl thiosemicarbazide and 1,4-diphenylsemicarbazide, respectively. Monomeric complexes of these ligands, of general formulae K2[CrIII(L n )Cl2], K3[MnII(L n )Cl2] and K[M(L n )] (M = Co(II), Ni(II), Cu(II), Zn(II) or Hg(II); n = 1, 2), are reported. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for the Cr(III), Mn(II) complexes, square planar for Co(II), Ni(II) and Cu(II) complexes and tetrahedral for the Zn(II) and Hg(II) complexes.  相似文献   

11.
The diamide N,N,N,N′-tetraoctyldiglycolamide (TODGA) was synthesized and characterized. The prepared TODGA was applied for extraction of Ce(III) from nitric acid solutions. The equilibrium studies included the dependencies of cerium distribution ratio on nitric acid, TODGA, nitrate ion, hydrogen ion and cerous ion concentrations. Analysis of the results indicates that the main extracted species is Ce(TODGA)2(NO3)3HNO3. The capacity of Ce loading is approximately 45 mmol/L for 0.1 M solution of TODGA in n-hexane. Finally, the thermodynamic parameters were calculated: K (25 °C) = 3.8 × 103, ΔH = −36.7 ± 1.0 kJ/mol, ΔS = −54.6 ± 3.0 J/K mol, and ΔG = −20.4 ± 0.1 kJ/mol.  相似文献   

12.
Catalytic wet air oxidation of an aqueous solution of p-hydroxybenzoic acid was conducted over ruthenium catalysts (1 wt%) supported on CeO2–Al2O3 aerogels mixed oxides at 140 °C and 50 bars of air. We study the effect of the amount of CeO2 in the catalyst. We found that the optimal cerium content in the Al2O3 support was 20 wt%. The activity of the Ru/Al2O3 and Ru/CeO2 was also tested for comparison. It was found that the addition of CeO2 on the alumina support improves the activity of Ru catalysts. The activity of the samples decreases in the following order: Ru/Ce–Al (20) > Ru/Ce–Al (10) > Ru/Ce–Al (5) ≈ Ru/Al2O3 > Ru/CeO2. Samples characterization was performed by means of N2 adsorption–desorption, XRD, UV–Vis, TPR, SEM and TEM.  相似文献   

13.
The La based perovskite type LaMO3 (M = Ni, Co) oxides were prepared by combustion synthesis method using citric acid as organic fuel. These catalyst precursors tested for ammonia decomposition. The LaNiO3 and LaCoO3 catalysts showed good activity for NH3 decomposition. The LaNiO3 catalyst displayed greater activity than LaCoO3. This due to high surface area and easily reducibility of Ni species. A 50% of La was substituted by Ce in both LaNiO3 and LaCoO3 catalysts. A remarkable effect on catalytic performance was observed with the partial substitution of La by Ce in perovskite catalyst especially at lower temperatures. The La0.5Ce0.5NiO3 catalyst exhibited highest activity among all prepared samples. The achieved superior activity is due to boost in surface area, reducibility and suitable basicity. The SEM elemental mapping of La0.5Ce0.5NiO3 catalyst concluded that metal oxide constituents dispersed homogeneously. The La0.5Ce0.5NiO3 catalyst showed excellent stable catalytic performance during 50 h time on study at 550 °C.  相似文献   

14.
Hydrazine forms two different types of complexes with divalent metal ions and pyromellitic acid (H4pml) in aqueous medium: (i) hydrazinium complexes of formulae, (N2H5)2M(pml)·xH2O, where x = 3 for M=Ni and x = 4 for M=Co or Zn, and (N2H5)2Mn(H2pml)2, at pH 4.5, (ii) neutral hydrazine complexes with formulae, M2(pml)(N2H4) n ·xH2O where M=Co or Ni when n = 4 and x = 5 or 4 and M=Zn or Cd when n = 2, and x = 4 or 3 at pH 7, and M(H2pml)(N2H4xH2O where x = 4; M=Cu and x = 0; M=Hg, at pH 3, 7.5, respectively. All the complexes are insoluble in water, alcohol and ether. The N–N stretching frequency (990–1,007 cm−1 for coordinated hydrazinium ion and 956–985 cm−1 for bridged neutral hydrazine) indicates the nature of hydrazine present in the complexes. Simultaneously TG-DTA analysis indicates that hydrazinium complexes undergo dehydration and dehydrazination in a single step endothermally in the range of 289–300 °C whereas neutral hydrazine complexes undergo endothermic dehydration (~100 °C) followed by exothermic dehydrazination in the temperature range, 253–332 °C. The anhydrous metal carboxylates further decompose exothermally to leave the respective metal oxides or metal carbonates except zinc, which gives its oxalate as the end product. X-ray powder patterns indicate that even the complexes with the same formulation possess no isomorphism.  相似文献   

15.
A series of planar Ni(II) dithiolenes derived of maleonitriledithiol (mnt), benzene-1,2-dithiol (bdt) and toluene-3,4-dithiol (tdt) with bidentate P,P-ligands (dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis(diphenylphosphino)propane, dppb = 1,4-bis(diphenylphosphino)butane, dpppn = 1,5-bis(diphenylphosphino)pentane) of the [Ni(P,P)(dithiol)] type have been synthesized. The compounds have been characterized by elemental analysis, IR and electronic spectroscopies, magnetochemical, conductivity measurements and thermal analysis. Single crystal X-ray analysis of [Ni(dpppn)(mnt)] confirmed a planar geometry of NiP2S2 chromophore. Possible practical applications such as use of these compounds for vulcanization accelerators and their anticholinesterase activity were evaluated.  相似文献   

16.
The complexes of rare earth elements with 2,3-naphthalenedicarboxylic acid of the formula: Ln2(C12H6O4)3·nH2O, where Ln = La(III)-Lu(III) and Y(III); n = 3 for La(III), Ce(III); n = 6 for Pr(III)-Yb(III) and Y(III) and n = 5 for Lu(III) have been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis (TG, DTG, DTA and TG-FTIR) and X-ray analysis. They are sparingly soluble in water and stable at room temperature. During heating in air atmosphere, they lose all water molecules in several steps, generally in two or three steps, except for the La(III) and Ce(III) complexes which lose all water molecules in one step. The anhydrous compounds are stable up to about 773 K and then decompose to corresponding oxides. The thermal decomposition is connected with the release of water molecules (443 K), carbon dioxide (713 K) and hydrocarbons.  相似文献   

17.
Ce doped ZnO nanoparticles (Zn1−xCexO, x = 0.0, 0.05 and 0.1) have been synthesized by sol–gel method at annealing temperature of 500 °C for 1 h under Ar atmosphere. The synthesized samples have been characterized by powder X-ray diffraction (XRD), energy dispersive X-ray studies, UV–Visible spectrophotometer and fourier transform infrared (FTIR) spectroscopy. The XRD measurements indicate that the prepared nanoparticles have a hexagonal wurtzite structure and CeO2 crystallites. The calculated average crystalline varied from 21.97 to 15.62 nm with increase in Ce concentrations. The increase in lattice parameters reveals the substitution of Ce into ZnO lattice. The presence of functional groups and the chemical bonding is confirmed by FTIR spectra. PL spectra of the Zn1−xCexO system show that the shift in near band edge emission from 386 to 363 nm and a shift in blue band emission from 517 to 485 nm which confirms the substitution of Ce into the ZnO lattice.  相似文献   

18.
19.
Three new polyamine Ni(II) complexes, namely [Ni(trien)(phen)](BF4)2 1, [Ni(trien)(bipy)](ClO4)2 2 and [Ni(trien)(en)](ClO4)2 3 [trine = triethylenetetramine, phen = 1,10-phenanthroline, bipy = 2,2′-bipyridyl, en = ethylenediamine] have been synthesized and characterized by physico-chemical and spectroscopic methods. Complexes 1 and 2 crystallize in monoclinic space group P21/c, and possess a distorted octahedral geometry. Significant hydrogen bonding interactions are found in both complexes.  相似文献   

20.
Rare earth complexes with 2,2′-biphenyldicarboxylic acid (diphenic acid = H2dpa) were obtained as hydrated precipitates of the general formula Ln2(C14H8O4)3nH2O, where n = 3 for the of Y(III) and Ce(III)–Er(III) and n = 6 for La(III), Tm(III), Yb(III) and Lu(III) complexes. On heating in air atmosphere complexes lose all water molecules in the temperature range 30–210 °C in one step and form anhydrous compounds, which are stable up to 315–370 °C. During further heating they decompose to oxides. The trihydrated compounds are crystalline powders whereas the hexahydrated are amorphous solids. The trihydrated complexes crystallize in the monoclinic (Pr(III) and Ce(III) complexes) and triclinic (Y(III) and Nd(III)–Er(III) complexes) crystal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号