首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚苯乙烯反相色谱柱为固定相,建立高效液相色谱-示差检测法(HPLC-RI)快速在线检测依替米星含量。采用MKF-RP-ETM色谱柱(300×7.8 mm,5μm),流动相为0.4 mol/L乙酸钠缓冲液(pH5.5),流速为1.0 mL/min。结果表明,MKF-RP-ETM色谱柱和HPLC-RI法可方便、快速用于分析鉴定依替米星及杂质,依替米星保留时间约为14 min,与杂质能够达到基线分离。本方法较之薄层色谱法、衍生化法,可方便、快速、有效地用于依替米星发酵液生产、纯化过程中快速在线检测。  相似文献   

2.
Huang H  Li L  Zhou G  Liu Z  Ma Q  Feng Y  Zeng G  Tinnefeld P  He Z 《Talanta》2011,85(2):1013-1019
Melamine that can cause serious damage to the organs of animal or human beings was found to bind to polythymine via hydrogen bonding. With this novel discovery, colorimetric detection of melamine based on label-free and labeled gold nanoparticles was developed, respectively. Both of the methods revealed good selectivity for melamine over other components that may exist in milk and good anti-influence ability. The raw milk samples were pretreated according to the National standard method combined with a solid phase extraction monolithic column. The accurate quantification of melamine as low as 41.7 nM and 46.5 nM was obtained, respectively. It also guarantees fast and reliable readout with naked eyes, making visual detection possible. Further comparison between label-free and labeled based methods was discussed in this paper.  相似文献   

3.
Gold nanoparticles (AuNps) are often employed in different detection paths based on the catalytic growth mechanism; AuNps could act as catalyst for the reduction of AuCl4? and result in the enlargement of the original AuNps. However, there are few probes based on the anti-catalytical growth of AuNps in previous studies. In this article, we proposed a simple colorimetric sensor for the detection of glutathione (GSH) based on the anti-catalytical growth of AuNps, the strong affinity of GSH make it readily combine with AuNps or metal ions (AuCl4?), and thus inhibit the catalytical growth of AuNps through the specific property of GSH. Therefore, the UV absorbance of detection system could be used to estimate the concentration of GSH, and the probe exhibits highly sensitive and selective detection of the concentration of GSH with a wide linear from 13 to 800 nM within 20 min. Meanwhile, a good linear relationship with correlation coefficient of R2 = 0.9795 was obtained. It is believed that this research could broaden the choices of GSH detection methods.  相似文献   

4.
In this work, green fluorescent carbon dots with a high relative quantum yield of 74.13% were synthesized by using one-pot hydrothermal hydrolysis of m-phenylenediamine (mPD) and PEG 1500 in H2SO4 solution at 180 °C for 10 h (mPD-CDs). In the presence of mPD-CDs, Fe2+ can form a complex with 1,10-phenanthroline (Fe(II) – phenanthroline) without interference from mPD-CDs, which has an absorption peak centered at 512 nm and its absorbance is sensitive to the concentration of Fe(II) – phenanthroline. Accordingly, a colorimetric method for the detection of Fe2+ was constructed with a limit of detection (LOD) of 2.98 μM. Moreover, the absorption spectrum of the Fe (II)-phenanthroline complex is overlapping with the excitation and emission spectra of mPD-CDs located at 440 and 516 nm, respectively, resulting in an inner filter effect (IFE) which is sensitive to the concentration of Fe(II) – phenanthroline. Correspondingly, a fluorimetric method for the detection of Fe2+ based on the mPD-CDs/phenanthroline system was built with a LOD as low as 0.59 μM. Therefore, colorimetric and fluorimetric dual mode detection of Fe2+ in aqueous solution can be achieved by a carbon dots/phenanthroline system.  相似文献   

5.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection.  相似文献   

6.
Sun Y  Cai S  Cao Z  Lau C  Lu J 《The Analyst》2011,136(20):4144-4151
A novel approach is proposed in this study for the development of an aptameric assay system for protein based on non-stripping gold nanoparticles (NPs)-triggered chemiluminescence (CL) upon target binding. The strategy chiefly depends on the formation of a sandwich-type immunocomplex among the capture antibody immobilized on the polystyrene microwells, target protein and aptamer-functionalized gold NPs. Introduction of target protein into the assay system leads to the attachment of gold NPs onto the surface of the microwells and thus the assembled gold NPs could trigger the reaction between luminol and AgNO(3) with a CL emission. Further signal amplification was achieved by a simple gold metal catalytic deposition onto the gold NPs. Such an amplified CL transduction allowed for the detection of model target IgE down to the 50 fM, which is better than most existing aptameric methods for IgE detection. This new protocol also provided a good capability in discriminating IgE from nontarget proteins such as IgG, IgA, IgM and interferon. The practical application of the proposed gold NPs-based immunoassay was successfully carried out for the determination of IgE in 35 human serum samples. Overall, the proposed assay system exhibits excellent analytical characteristics (e.g., a detection limit on the attomolar scale and a linear dynamic range of 4 orders of magnitude), and it is also straightforward to adapt this strategy to detect a spectrum of other proteins by using different aptamers. This new CL strategy might create a novel technology for developing simple biosensors in the sensitive and selective detection of target protein in a variety of clinical, environmental and biodefense applications.  相似文献   

7.
A simple, highly sensitive and selective carbon nanocomposite electrode has been developed for the electrochemical trace determination of mercury. This mercury nanocomposite sensor was designed by incorporation of thiolated amino acids capped AuNps into the carbon ionic liquid electrode (CILE) which provides remarkably improved sensitivity and selectivity for the electrochemical stripping assay of Hg(II). Mercury ions are expected to interact with amino acids through cooperative metal–ligand interaction to form a stable complex which provides a sensitive approach for electrochemical detection of Hg(II) in the presence of other metal ions. The detection limit was found to be 2.3 nM (S/N = 3) that is lower than the permitted value of Hg(II) reported by the Environmental Protection Agency (EPA) limit of Hg(II) for drinkable water. The proposed nanocomposite electrode exhibits good applicability for monitoring Hg(II) in tap and waste water.  相似文献   

8.
A selective and sensitive electrode based on Au−S bonds between As(III) ion-imprinted polymer (IIP) and the flower-like gold nanoparticles (FL-AuNPs) had been rationally developed for detecting As(III) by using the square wave voltammetry (SWV) method. Under optimized measurement conditions, the prepared electrochemical sensor exhibited obvious detection performance of As(III) in the range of 0.009 μg/L–0.50 μg/L with a relatively low detection limit of 0.015 μg/L. Furthermore, the imprinted electrochemical sensor displayed good reusability, excellent specificity, and demonstrated high potential for environmental control with a recovery rate between 80.7 % and 113.3 %.  相似文献   

9.
A homogeneous aggregation immunoassay involving the use of gold nanoparticles (AuNPs) and light scattering detection is described for soy protein determination in food samples. AuNPs act as enhancers of the precipitate that appears when the antigen-antibody complex is formed. The AuNPs-antibody conjugate has been synthesized by physical adsorption of polyclonal anti-soy protein antibodies onto the surface of commercial AuNPs with a nominal diameter of 20 nm. The direct assay is based on the reaction of the conjugate with soy protein, which reaches the equilibrium in about 10 min, and the measurement of the light scattering intensity at 530 nm, which is proportional to the analyte concentration. The dynamic range of the calibration graph is 0.2-20 μg mL−1 and the detection limit value is 65 ng mL−1. The precision, expressed as relative standard deviation, has been assayed at two different concentrations, 0.2 and 1 μg mL−1, giving values ranging from 4.7 to 5.9%. The interference of other proteins has been assayed. The usefulness of this method has been shown by its application to the analysis of fruit juice and “nonmilk yoghourt” samples. The results obtained with the proposed method are similar to those obtained by using a commercial ELISA kit, but the assay time is significantly shorter and the detection limit was about 10 times lower. A recovery study has been also performed, giving values in the range of 84.0-119.3%.  相似文献   

10.
Gliadin from wheat is a common food allergen that can induce baker’s asthma, wheat-dependent exercise-induced anaphylaxis, atopic dermatitis, and celiac disease. This gliadin assay focuses on rapidly screen and check for gluten contamination in raw materials and in the gluten-free food production process, not only for wheat-sensitive patients but also for the industries producing gluten-free foodstuffs. The developed assay incorporates the use of anti-gliadin antibody-conjugated immunomagnetic beads (IMBs) to capture the gliadin in samples and fluorescent dyes-loaded immunoliposomal nanovesicles (IMLNs) to produce and enhance the detection signal. Hence, a sandwich complex is formed as “IMBs–gliadin–IMLNs”. Experimental results indicate that this detection platform exhibits good sensitivity for gliadin with a detection limit as low as 0.6 μg mL−1 of gliadin; as the polyclonal antibody showed slight cross-reactions with barley and rye. Excellent recovery rates were found ranging from 83.5 to 102.6% as testing the spiked samples. Moreover, the CV (%) of intra- and inter-assay of this developed assay are 4.8–10.6% and 3.5–9.9%, respectively. Based on a parallel analysis of twenty food samples, the results of this developed assay provide a good consistency with those of an AOAC-approved ELISA kit without any false-negative results. The proposed assay method is thus a highly promising alternative method for detecting the contamination of gliadin in the food industry.  相似文献   

11.
Chen J  Zheng A  Chen A  Gao Y  He C  Kai X  Wu G  Chen Y 《Analytica chimica acta》2007,599(1):134-142
A gold-nanoparticles (Au NPs)-Rhodamine 6G (Rh6G) based fluorescent sensor for detecting Hg (II) in aqueous solution has been developed. Water-soluble and monodisperse gold nanoparticles (Au NPs) has been prepared facilely and further modified with thioglycolic acid (TGA). Free Rh6G dye was strongly fluorescent in bulk solution. The sensor system composing of Rh6G and Au NPs fluoresce weakly as result of fluorescence resonance energy transfer (FRET) and collision. The fluorescence of Rh6G and Au NPs based sensor was gradually recovered due to Rh6G units departed from the surface of functionalized Au NPs in the presence of Hg(II). Based on the modulation of fluorescence quenching efficiency of Rh6G-Au NPs by Hg(II) at pH 9.0 of teraborate buffer solution, a simple, rapid, reliable and specific turn-on fluorescent assay for Hg(II) was proposed. Under the optimum conditions, the fluorescence intensity of sensor is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 5.0 × 10−10 to 3.55 × 10−8 mol L−1, and the corresponding limit of detection (LOD) is low as 6.0 × 10−11 mol L−1. The relative standard deviation of 10 replicate measurements is 1.5% for 2.0 × 10−9 mol L−1 Hg(II). In comparison with conventional fluorimetric methods for detection of mercury ion, the present nanosensor endowed with higher sensitivity and selectivity for Hg(II) in aqueous solution. Mercury(II) of real environmental water samples was determined by our proposed method with satisfactory results that were obtained by atomic absorption spectroscopy (AAS).  相似文献   

12.
We report a low cost selective analytical method based on inner filter effect (IFE) for citrate-silver nanoparticle (cit-AgNP) detection, in which fluorescent amine-derivatized carbon dots (a-CDs) act as the donor and aggregated cit-AgNPs as the energy receptor. Carbon dots (CDs) were chemically modified with ethylenediamine (EDA) moieties via amidic linkage displaying an emission band at 440 nm. The presence of cit-AgNPs produces a remarkably quenching of a-CD fluorescence via IFE, since the free amine groups at CD surface induce the aggregation of cit-AgNPs accompany by a red-shifting of their characteristic plasmon absorption wavelength, which resulted in “turn-on” of the IFE-decreased in CD fluorescence. The proposed method, which involves the use of chelating agents for removal of metal ions interferences, exhibits a good linear correlation for detection of cit-AgNPs from 1.23 × 10−5 to 6.19 × 10−5 mol L−1, with limits of detection (LOD) and quantification (LOQ) of 5.17 × 10−6 and 1.72 × 10−5 mol L−1, respectively. This method demonstrates to be efficient and selective for the determination of cit-AgNPs in complex matrices such as cosmetic creams and reveals many advantages such as low cost, reusability, high sensitivity and non time-consuming compared with other traditional methods.  相似文献   

13.
In this work, we develop a simple and rapid sensing method for the visual and fluorescent detection of acetamiprid (AC) based on the inner-filter effect (IFE) of gold nanoparticles (AuNPs) on ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs based dual-emission nanosensor was fabricated by assembling green emissive QDs (QDs539 nm, λem = 539 nm) on the surface of red emissive QDs (QDs661 nm, λem = 661 nm)-doped silica microspheres. The photoluminescence (PL) intensity of RF-QDs could be quenched by AuNPs based on IFE. Acetamiprid can adsorb on the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on RF-QDs was weakened and the PL intensity of RF-QDs was recovered accordingly. Under the optimized conditions, the PL intensity of the RF-QDs/AuNPs system was proportional to the concentration of AC in the range of 0.025–5.0 μg mL−1, with a detection limit of 16.8 μg L−1. The established method had been used for AC detection in environmental and agricultural samples with satisfactory results.  相似文献   

14.
A sensitive and efficient analytical method for gabapentin (GBP) in human serum based on capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection has been established. 6-Oxy-(N-succinimidyl acetate)-9-(2′-methoxycarbonyl) fluorescein (SAMF), a new synthesized fluorescent reagent, was used for precolumn derivatization of the non-fluorescent drug in serum. γ-Aminobutyric acid (GABA) was used as an internal standard (I.S.). The best derivative condition was obtained in phosphate buffer (pH 8) at room temperature for 10 min. Optimal separation and detection were obtained with a background electrolyte (BGE) of 3.5 × 10?2 M phosphate buffer (pH 5.5) and laser-induced fluorescence detection excited at 473 nm. The method developed for GBP was linear over the concentration range of 4.0 × 10?9 to 4.0 × 10-7 M. The concentration limit of detection was 2.0 × 10?10 M (signal-to-noise ratio = 3). The sensitive method was used for the determination of GBP in serum samples.  相似文献   

15.
16.
An immunosensor has been fabricated for direct amperometric determination of carcinoembryonic antigen. It is based on a biocompatible composite film composed of porous chitosan (pChit) and gold nanoparticles (GNPs). Firstly, a pChit film was formed on a glassy carbon electrode by means of electrodeposition. Then, thionine as a redox probe was immobilized on the pChit film modified electrode using glutaraldehyde as a cross-linker. Finally, GNPs were adsorbed on the electrode surface to assemble carcinoembryonic antibody (anti-CEA). The surface morphology of the pChit films was studied by means of a scanning electron microscope. The immunosensor was further characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The electrochemical behaviors and factors influencing the performance of the resulting immunosensors were studied in detail. Results showed that the pChit films can enhance the surface coverage of antibodies and improve the sensitivity of the immunosensor. Under optimal conditions, the immunosensor was highly sensitive to CEA with a detection limit of 0.08 ng·mL?1 at three times the background noise and linear ranges of 0.2~10.0 ng·mL?1 and 10.0~160 ng·mL?1. Moreover, the immunosensor exhibited high selectivity, good reproducibility and stability.  相似文献   

17.
This study reports a novel, simple and sensitive immunoassay using fluorescence quenching caused by gold nanoparticles coated with antibody. The method is based on a non-competitive heterogeneous immunoassay of human IgG conducted by the typical procedure of sandwich immunocomplex formation. Goat anti-human IgG was first adsorbed on polystyrene microwells, and human IgG analyte was captured by the primary antibody and then sandwiched by antibody labeled with gold nanoparticles. The sandwich-type immunocomplex was subsequently dissociated by the mixed solution of sodium hydroxide and trisodium citrate, the solution obtained, which contains gold nanoparticles coated with antibody, was used to quench fluorescence. The fluorescence intensity of fluorescein at 517 nm was inversely proportional to the logarithm of the concentration of human IgG in the dynamic range of 10-5000 ng mL−1 with a detection limit of 4.7 ng mL−1. The electrochemical experiments and the UV-vis measurements were applied to demonstrate whether the immunoglod was dissociated completely and whether the gold nanoparticles aggregated after being dissociated, respectively. The proposed system can be extended to detect target molecules such as other kinds of antigen and DNA strands, and has broad potential applications in disease diagnosis.  相似文献   

18.
We report herein the development of a highly sensitive colorimetric method for detection of d-Penicillamine using citrate-capped gold nanoparticles (AuNPs). This assay relies upon the distance-dependent of gold nanoparticles surface plasmon resonance band of gold nanoparticles. By replacing the thiol-containing chelator drug, d-Penicillamine, with citrate on the gold nanoparticles surface, a new peak appearing at a longer wavelength intensifies and shifts further to the red from the original peak position due to aggregation of gold nanoparticles which depends on ionic strength, gold nanoparticles and d-Penicillamine concentration. During this process, the plasmon band at 521 nm decreases gradually along with the formation of a new red-shifted band at 630 nm. The calibration curve which is derived from the ratio intensities of absorbance at longer wavelength (630 nm) to original wavelength (521 nm) displays a linear relation in the range of 5.0 × 10?6–3.0 × 10?4 M d-Penicillamine. Lower limit of detection for d-Penicillamine, at the signal-to-noise ratio of 3 (3σ), was 3.8 × 10?6 M. The developed methodology was successfully applied for the determination of d-Penicillamine in human urine and plasma.  相似文献   

19.
An electrochemiluminescence (ECL) biosensor for simultaneous detection of adenosine and thrombin in one sample based on bifunctional aptamer and N-(aminobutyl)-N-(ethylisoluminol) functionalized gold nanoparticles (ABEI-AuNPs) was developed. A streptavidin coated gold nanoparticles modified electrode was utilized to immobilize biotinylated bifunctional aptamer (ATA), which consisted of adenosine and thrombin aptamer. The ATA performed as recognition element of capture probe. For adenosine detection, ABEI-AuNPs labeled hybridization probe with a partial complementary sequence of ATA reacted with ATA, leading to a strong ECL response of N-(aminobutyl)-N-(ethylisoluminol) enriched on ABEI-AuNPs. After recognition of adenosine, the hybridization probe was displaced by adenosine and ECL signal declined. The decrease of ECL signal was in proportion to the concentration of adenosine over the range of 5.0 × 10−12–5.0 × 10−9 M with a detection limit of 2.2 × 10−12 M. For thrombin detection, thrombin was assembled on ATA modified electrode via aptamer–target recognition, another aptamer of thrombin tagged with ABEI-AuNPs was bounded to another reactive site of thrombin, producing ECL signals. The ECL intensity was linearly with the concentration of thrombin from 5 × 10−14 M to 5 × 10−10 M with a detection limit of 1.2 × 10−14 M. In the ECL biosensor, adenosine and thrombin can be detected when they coexisted in one sample and a multi-analytes assay was established. The sensitivity of the present biosensor is superior to most available aptasensors for adenosine and thrombin. The biosensor also showed good selectivity towards the targets. Being challenged in real plasma sample, the biosensor was confirmed to be a good prospect for multi-analytes assay of small molecules and proteins in biological samples.  相似文献   

20.
A homogeneous hemin/G-quadruplex DNAzyme (HGDNAzyme) based turn-on chemiluminescence aptasensor for interferon-gamma (IFN-γ) detection is developed, via dynamic in-situ assembly of luminol functionalized gold nanoparticles (lum-AuNPs), DNA, IFN-γ and hemin. The G-quadruplex oligomer of the HGDNAzyme was split into two halves, which was connected with the complementary sequence of P1 (IFN-γ-binding aptamer) to form the oligonucleotide P2. P2 hybridized with IFN-γ-binding aptamer and meanwhile assembled onto lum-AuNPs through biotin–streptavidin specific interaction. When IFN-γ was recognized by aptamer, P2 was released into the solution. The two lateral portions of P2 combined with hemin to yield the catalytic hemin/G-quadruplex DNAzyme, which amplified the luminol oxidation for a turn-on chemiluminescence signaling. Based on this strategy, the homogeneous aptasensor enables the facile detection of IFN-γ in a range of 0.5–100 nM. Moreover, the aptasensor showed high sensitivity (0.4 nM) and satisfactory specificity, pointing to great potential applications in clinical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号