首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lifting of cuttings has been a challenging phenomenon in the petroleum industry for a long period, given the complexity of different cuttings types and their high tendency to gravitate to the low side of the hole. Although many additives have been applied to improve the efficiency of water-based muds (WBMs) for cuttings transport, only a few success was recorded in the application of these additives once evaluated under different field situations. In this study, a new WBM formulated by nanocomposites was proposed to lift cuttings out of the annulus during drilling. Series of characterization, rheological, filtration loss, and cuttings transport tests were performed on the drilling muds formulated by (3-Aminopropyl) triethoxysilane modified polypropylene-silica nanocomposite (PP-SiO2 NC-NH2). The cuttings transport test was conducted in a 16-ft. annulus using 9.5 ppg muds, a 60°-hole angle, and annular velocities between 66.1 and 138.6 ft/min at different PP-SiO2 NC-NH2 concentrations of 0.4, 0.5, 0.8, and 1.2 ppb. The performance of 0.5 ppb PP-SiO2 NC-NH2 + WBM on CTE was evaluated and compared with that of WBM + 0.5 ppb of partially hydrolyzed polyacrylamide (PHPA) at five different hole angles from 90 to 0°. The results of zeta potential showed that the PP-SiO2 NC-NH2 was stable. The rheological and filtration properties were enhanced by the inclusion of PP-SiO2 NC-NH2 in the WBM. There exists a better enhancement in the CTE of PP-SiO2 NC-NH2 + WBM over that of PHPA + WBM at 0.5 ppb. The highest cuttings lifted to the surface occurred in a vertical well, followed by 90°, 30°, 60°, and 45° wells. An increase in annular velocity and the orbital motion of the drill pipe by mechanical action increased the CTE of the nanocomposite more than the rest mud samples. It seems the PP-SiO2 NC-NH2 can be more effective than the PHPA for the drilling process and can improve the cuttings lifting performance of WBMs but caution should be exercised to ensure its proper dispersion in drilling muds.  相似文献   

2.
The forpolymer of N-vinylpyrrolidone (NVP), itaconic acid (IA), acrylamide (AM) and 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) was synthesized through free-radical polymerization and was characterized using Fourier transform IR spectroscopy. The colloidal properties of the drilling fluid were investigated in the form of fresh-water or salt-water mud. It was found that the NVP–IA–AM–AMPS forpolymer had strong effects on the properties of the mud. The filtrate volume decreased with the increase of the forpolymer concentration before or after the aging test at 220 °C, and the filtrate volume after the aging test was larger than that before the aging test, but was still very small compared with the corresponding base mud. In addition, the rheological properties of both fresh-water mud and salt-water mud were modified by the forpolymer. The particle size data demonstrated that the average size of the clay particle after the aging test was larger than that before the aging test and that the particle size of the fresh-water mud was narrower compared with that of the salt-water mud before and after the aging test, respectively. The drilling fluid containing the forpolymer had an excellent tolerance to salt and high temperature. Received: 13 September 2000/Accepted: 9 January 2001  相似文献   

3.
As the basic raw material of bio-oil based eco-friendly lubricant, a special selected by-product vegetable acidified oil (AO) was modified by vulcanization, esterification, or vulcanization followed by esterification. The optimized vulcanization process conditions are 1% sulfur powder catalyzed, temperature 130 ℃, reaction time 2 h, while the optimized esterification process requires 20% glycerol and 1% H2SO4 catalysis, reaction temperature 220 ℃, reaction time 3 h. We compounded modified AO, diluent, pour point depressant and emulsifier into an advanced drilling lubricant F-1. F-1 has excellent performances in bentonite drilling fluids, the extreme pressure lubrication coefficient reduction rate (Δf) in fresh water mud is 86.84%, and 85.76% in 4% NaCl salt water mud. After aging at 150 ℃ for 16 h, its Δf is improved compared with room temperature. Adding F-1 to the basic bentonite mud system, the filtration loss of drilling fluids decreased from 10 mL to 6.5 mL, the apparent viscosity and plastic viscosity experienced little change before and after aging. The new bio-oil compound lubricant has an excellent temperature resistance, a high salt contamination resistance and cost-effective. Vulcanization and esterification processes help to improve the lubricity and reduce foaming rates.  相似文献   

4.
To study the effects of pre-adsorbed emulsifier on Pickering emulsion stability, the preparation of silicone oil emulsions by TiO2 suspensions pre-adsorbed sodium dodecyl sulfate (SDS) at the fixed TiO2 concentration of 0.15 g was carried out below a fiftieth of critical micelle concentration (cmc) of SDS, where all added amounts of SDS are adsorbed on the TiO2 particles. The stability of the Pickering emulsions incorporating TiO2 suspensions pre-adsorbed SDS was investigated by measuring the volume fraction of emulsified silicone oil, adsorbed amounts of TiO2 suspensions pre-adsorbed SDS, oil droplet size, and some rheological responses such as the stress-strain sweep curve and strain and frequency dependences of dynamic viscoelastic moduli. The silicone oil was almost emulsified by TiO2 suspensions pre-adsorbed SDS above cmc/103. Increasing in the adsorbed amount of SDS on the TiO2 particles leads to an increase in the adsorbed amounts of TiO2 suspensions pre-adsorbed SDS. Such silicone oil emulsions for the first time showed two yield stresses in the stress-strain sweep curve as well as the oscillatory stress-strain curve. The respective yield stresses also increase with an increase in the adsorbed amounts of TiO2 suspensions pre-adsorbed SDS. From such characteristic rheological properties and a partial sedimentation of some TiO2 particles remained in the dispersion medium, we proposed the formation of a three dimensional network of the flocculated TiO2 particles pre-adsorbed SDS on the silicone oil droplets.  相似文献   

5.
Although water supplies are prominently dependent on desalination technology, desalination plant facing severe issues of discharged brine concentrate. Membrane distillation crystallization is an emerging synergistic technology that resolves the issue of brine concentrate by recovering clean water and value-added minerals simultaneously. In the present study, properties of polyvinylidene fluoride (PVDF) membrane were modified by incorporation of exfoliated fillers of hexagonal boron nitride and polyethylene glycol. The changes in morphology, surface roughness, hydrophobicity, thermal stability, and chemical composition of the prepared membranes were evaluated by scanning electron microscopy, atomic force microscopy, contact angle, thermogravimetric analysis, Fourier-transform infrared spectroscopy, respectively. Membrane distillation crystallization experiments were conducted to observe the effect of modified membranes on the permeate flux and salts recovery at different feed temperatures. The results showed a significant improvement in the permeate flux with modified membranes compared with pure PVDF membrane. It was found that hexagonal boron nitride/polyethylene glycol200 incorporated PVDF membrane gave the higher permeate flux (3.41 kg/m2 h for K2SO4 and 2.62 kg/m2 h for KNO3) at a temperature of 80 °C along with higher salts recovery than pure PVDF membranes. A 100 h long run test was conducted on modified membranes, which showed consistency in permeate flux with a marginal increase in conductivity.  相似文献   

6.
This paper investigates the rheological properties of methylcellulose-silica-ionic liquid nanocomposite (2-MCPS-MC) on the rheological properties (apparent viscosity (AV), plastic viscosity (PV), yield point (YP), 10-s gel strength, 10-min gel strength, and thixotropy according to API requirements) of water-based mud, and comparing these properties with the properties of the silica-free methylcellulose (MC) as drilling fluid additive. The physicochemical properties of the MC and 2-MCPS-MC compounds were studied using 1H NMR, FTIR, Raman-spectroscopy, XRD, FE-SEM, AFM, and TGA. By FE-SEM and AFM, it is proven that the silica had an excellent dispersion in a spherical shape on the MC polymer. Three samples were prepared: the first is the commercial water-based mud, while the second and the third samples are MC and 2-MCPS-MC, respectively. The samples of MC were prepared in four concentrations (2%, 1.5%, 1.0% and 0.5% by weight). Throughout the test, density remained at 7.6 (lbs/gal) for mud fluid and 8.5 (lbs/gal) for MC and 2-MCPS-MC at pH 9.0. The results confirmed that the optimum concentration of MC and 2-MCPS-MC, which meet the required API code, was between 1 and 1.5%. The addition of 2-MCPS-MC to water-based mud enhances filtration properties. Response surface technique (RSM) with central composite design (CCD) was also used to optimize the drilling fluid properties to achieve the optimal response to AV, PV, YP, Gl, and Thixotropic using a Design expert software. The results obtained by RSM showed consistency between the experimental and theoretical data.  相似文献   

7.
Drilling fluid is a vital element and is often regarded as the “blood” in the oil industry. Although traditional oil-based drilling fluids have advantages in some harsh cases, the high cost and environmental pollution faced with them limit its application. Water-based drilling fluids (WBDFs) with environmental friendly, low cost, and high performance are important for drilling engineering to solve the problems of low efficiency and wellbore instability caused by poor rheological properties and large filtration loss in drilling operations. In this paper, Fe3O4 nanoparticles modified by poly (acrylic acid) (PAA) through 3-(trimethoxysilyl) proryl methacrylate (TMSPMA) were introduced into WBDFs for enhancing their rheological and plugging performance. Rheological tests indicated that the consistency coefficient (K) of the Fe3O4/PAA nanoparticles/WBDFs decreased at a higher concentration. Incorporated nanoparticles with a concentration of 0.05?wt %, the WBDFs will exhibit good shear-thinning behavior. The results showed that the best performance for Fe3O4/PAA nanoparticles being as a filtration additive in WBDFs was achieved at concentration as low as 0.1?wt %. These results demonstrated that Fe3O4/PAA nanoparticles are effective additives for WBDFs.  相似文献   

8.
We reported proton-conducting membranes with novel microstructure based on partially phosphorylated poly(vinyl alcohol) (P-PVA) and polyethylene glycol (PEG) grafted silica (PEG-SiO2) particles. The PEG-SiO2 particles were synthesized through acid catalyzed hydrolysis and condensation reactions. The membranes were characterized for their mechanical, structural, morphological, and electrical properties by employing tensile test, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), impedance analyzer, respectively. In these membranes, P-PVA acts as the proton source and PEG act as the proton solvent. The PEG-riched phases in the hybrid membrane form continuous ionic conducting pathways and subsequently give high ionic conductivity. The results suggest that the obtained membrane shows good thermal stability, excellent mechanical property and high ionic conductivity, and the low-cost hybrid membrane can be a promising candidate for intermediate temperature fuel cell systems.  相似文献   

9.
(Mono, di) alkyl, aryl phosphate-ethoxylate were prepared from coal-tar-phenol. The synthesized ethoxylates were evaluated as water-in-oil emulsifiers in oil-base mud, one type of the drilling fluids used to drill for oil and gas wells by the rotary method. This study presents a new trend of disposal and reuse of cao-tar phenol, a byproduct that causes environmental problems. The newly prepared compounds were confirmed by FTIR and molecular weight determination. Surface properties of the newly prepared ethoxylates were studied via surface tension, emulsion stability, cloud points, critical micelle concentration, and hydrophile-lipophile balance. Also, rheological properties, filtration, and electrical stability were studied to the oil-base mud formulated with the newly prepared emulsifiers compared to the reference sample (commercial emulsifier).  相似文献   

10.
The oil-based mud filtrate will invade the formation under the overbalanced pressure during drilling operations. As a result, alterations will occur to the nuclear magnetic resonance (NMR) response characteristics of the original formation, causing the relaxation time of the NMR T2 spectrum of the free fluid part to move towards a slower relaxation time. Consequently, the subsequent interpretation and petrophysical evaluation will be heavily impacted. Therefore, the actual measured T2 spectrum needs to be corrected for invasion. For this reason, considering the low-porosity and low-permeability of sandstone gas formations in the East China Sea as the research object, a new method to correct the incorrect shape of the NMR logging T2 spectrum was proposed in three main steps. First, the differences in the morphology of the NMR logging T2 spectrum between oil-based mud wells and water-based mud wells in adjacent wells were analyzed based on the NMR relaxation mechanism. Second, rocks were divided into four categories according to the pore structure, and the NMR logging T2 spectrum was extracted using the multidimensional matrix method to establish the T2 spectrum of water-based mud wells and oil-based mud wells. Finally, the correctness of the method was verified by two T2 spectrum correction examples of oil-based mud wells in the study area. The results show that the corrected NMR T2 spectrum eliminates the influence of oil-based mud filtrate and improves the accuracy of NMR logging for calculating permeability.  相似文献   

11.
A new thermophilic bacterial strain identified as Bacillus cohnii US147 was isolated from the southern Tunisian soil. The identification was based on physiological tests and molecular techniques related to the 16S ribosomal ribonucleic acid. The isolated strain produced amylase, which was purified. This amylase had an apparent molecular mass of 30 kDa as estimated by sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis. Amylase US147 showed K m and V max values of 0.7 mg/ml and 2.2 U/ml, respectively, with starch as the substrate. The enzyme was active in acid and basic pH and had a maximal activity on starch at pH 9 and 70 °C. The enzyme was stable at pH 9 for 72 h and retained half of its activity after incubation at 70 °C for 150 min. A partially inhibition (15%, 25%, 23%, 20%, and 22%) was obtained with 1 mM SDS, 1 mM NaBO3, 1 mM H2O2, 1 mM Zn+2, and 5 mM ethylenediamine tetraacetic acid (EDTA), respectively. The amylase recovered its original activity by the addition of 10 mM Ca 2+ to the 5 mM EDTA. These properties indicated a possible use of this amylase in starch saccharification, in detergent, and in other industrial applications.  相似文献   

12.
Photophysical, photostability, electrochemical and molecular‐orbital characteristics are analyzed for a set of stable dicyanobacteriochlorins that are promising photosensitizers for photodynamic therapy (PDT). The bacteriochlorins are the parent compound (BC), dicyano derivative (NC)2BC and corresponding zinc (NC)2BC‐Zn and palladium chelate (NC)2BC‐Pd. The order of PDT activity against HeLa human cancer cells in vitro is (NC)2BC‐Pd > (NC)2BC > (NC)2BC‐Zn ≈ BC. The near‐infrared absorption feature of each dicyanobacteriochlorin is bathochromically shifted 35–50 nm (748–763 nm) from that for BC (713 nm). Intersystem crossing to the PDT‐active triplet excited state is essentially quantitative for (NC)2BC‐Pd. Phosphorescence from (NC)2BC‐Pd occurs at 1122 nm (1.1 eV). This value and the measured ground‐state redox potentials fix the triplet excited‐state redox properties, which underpin PDT activity via Type‐1 (electron transfer) pathways. A perhaps counterintuitive (but readily explicable) result is that of the three dicyanobacteriochlorins, the photosensitizer with the shortest triplet lifetime (7 μs), (NC)2BC‐Pd has the highest activity. Photostabilities of the dicyanobacteriochlorins and other bacteriochlorins studied recently are investigated and discussed in terms of four phenomena: aggregation, reduction, oxidation and chemical reaction. Collectively, the results and analysis provide fundamental insights concerning the molecular design of PDT agents.  相似文献   

13.
Surface active gelatins were formed by covalent attachment of hydrophobic groups to gelatin molecules by reactingN-hydroxysuccinimide esters of various fatty acids (C4–C16) with the lysine groups. The surface activity was evaluated by emulsification and foaming properties, and by adsorption at the oil–water interface. It was found that, in general, the modified gelatins are more surface active than the native gelatin. The increase in hydrophobic chain length and the number of attached alkyl chains per gelatin molecule leads to a decrease in the emulsion droplet's size and to more stable emulsions. Adsorption isotherms, at the o/w interface, show much higher surface concentration, at saturation, of the modified gelatin than the native gelatin. The modified gelatins also have high foaming ability and a high foam stability, while the maximal foam activity is obtained by the C8modified gelatin. The foaming properties of the surface-active gelatins were also compared to that of sodium dodecyl sulfate (SDS) and it was found that below the CMC of SDS, both foam activity and stability were higher for the modified gelatins. On the other hand, above the CMC the foam activity of SDS was higher, but the foam stability was lower than for C8–C16-modified gelatins.  相似文献   

14.
Gel layer formation on the membrane surface during filtration plays a significant role in membrane fouling that, in many instances, controls water production and energy consumption in the treatment of waters and wastewaters. In this study, alginate is selected as a model of the polysaccharides prevalent in wastewaters which, on membrane filtration, may form a gel on the membrane surface which subsequently limits filtrate throughput. We show that over the range of the applied pressures of 11.7–135 kPa considered here, constant pressure ultrafiltration of alginate follows the behavior of cake filtration. The material properties of the alginate are determined by the employment of the previously developed steady-state filtration approach. The consolidation of the gel layer is found to be controlled by the hydraulic flow resistance rather than the rearrangement of particles. Under these conditions, it is valid to apply the derived material properties for the quantification of both constant pressure and constant flux filtration. The gel layer formed from alginate is very compressible and far from uniform over its depth. Within the range of the applied pressures, the gel layer is very porous with a water content of more than 96% but very low Darcy permeability of less than 1 × 10−17 m2. During hollow fiber membrane filtration, the local flux is neither uniform nor constant along the fiber length, resulting in non-uniformity of the growth rate, the average porosity and the thickness of the gel layer. The non-uniformity is most apparent at the start of filtration and then gradually diminishes as the gel layer builds up with ongoing filtration.  相似文献   

15.
An indigenously isolated fungal strain identified as Aspergillus terricola with assigned fungal strain number MTCC 7588 has been used as source for pectin lyase production. The extracellular pectin lyase was purified to homogeneity from the culture filtrate of A. terricola by ion exchange and gel filtration chromatography. The determined molecular weight was 35 ± 01 kDa. The K m and k cat (turnover) values of the purified enzyme at 37 °C using citrus pectin as the substrate were found to be 1.0 mg/ml and 110.0 s−1, respectively. The pH and temperature optima of the enzyme were 8.0 and 50 °C, respectively. The retting ability of the purified pectin lyase for natural fibers viz. Cannabis sativa and Linum usitatissimum has been demonstrated for the first time.  相似文献   

16.
A Polysulfone-Polyethylene glycol (PS/PEG) flat sheet membrane was prepared by phase inversion technique. Dimethyl Formamide (DMF) was utilized as a solvent and deionized water was utilized as the coagulant. Polyethylene glycol (PEG) of a various dose of PEG 2000 was utilized as the polymeric improvers and as a pore-forming agent in the casting mixture. The single-walled carbon nanotube (SWCNTs), multi-walled carbon nanotube (MWCNTs), aluminum oxide (Al2O3) and copper oxide (CuO) nanoparticles (NPs) were utilized to improve the PS/PEG membrane performances. The characterizations of the neat PS, PS/PEG, PS/PEG/Al2O3 (M1) PS-PEG/CuO (M2), PS-PEG/SWCNTs (M3) and PS/PEG/MWCNTs (M14) nanocomposite (NC) modified membranes were acquired via Fourier-transform infrared analysis (FTIR), water contact angle estimation (WCA), scanning electron microscope (SEM), dynamic mechanical analyzer (DMA) and thermogravimetric analysis (TGA). Enhanced Direct contact membrane distillation (EDCMD) unit was used for estimating the efficiency of the performance of the synthesized NC membranes via 60 °C feed synthetic water and/or saline oil field produced water samples containing salinities 123,14 mg/L. Adjusting the operational procedures and water characteristics confirmed a high salt rejection of 99.99% by the synthesized NC membranes. The maximum permeate flux achieved in the order of SWCNTs (20.91) > Al2O3 (19.92) > CuO (18.92) > MWCNT (18.20) (L/m2.h) with adjusted concentration of 0.5, 0.75, 0.75, 0.1 wt% compared with PS weight, i.e. 16%. The optimum operational circumstances comprised feed and permeate temperatures 60 °C and 20 °C, respectively. The achieved flux was 5.97 L/m2.h, using brine oil field produced water, via PS/PEG/SWCNTs membrane with 0.5 wt% of SWCNTs. Moreover, the membrane indicated sustaining performance stability in the 480 min continuous desalination testing, showing that the synthesized PS/PEG/SWCNTs NC modified membrane may be of magnificent potential to be activated in EDCMD procedure for water desalination.  相似文献   

17.
The effects of addition of cationic cetyltrimethylammonium bromide (CTAB), non-ionic (Triton X-100) and anionic sodium dodecyl sulfate (SDS) surfactants in organic phase for preparing the composite nanofiltration membranes were investigated. The interfacial polymerization technique was employed by applying trimesoyl chloride (TMC) and piperazine (PIP) as the reagents for the preparation of poly(piperazineamide) on a UF support. The obtained thin layer membranes were placed in oven for 2 min at 70 °C. Water permeation performance, salt rejection, membrane surface charge, chemical structure and membrane morphology including top surface and cross-section were investigated for characterization of the prepared membranes using IR-ATR, SEM, filtration and zeta potential measurement. The prepared membranes using SDS showed higher flux compared to the other membranes. SEM surface images demonstrate some defects and cracks on the thin layer surface of the membrane prepared with SDS. For membrane containing CTAB, the salt rejection increased in the order of Na2SO4 > NaCl > MgCl2 with variation around 50–90%.  相似文献   

18.
Gas hydrates are solid structures formed from water and gas under low temperature and high pressure conditions. Differential scanning calorimeter, operating under high pressure, is a very useful technique for the determination of the thermodynamic properties and the kinetics of gas hydrate formation. Specific gas tight controlled pressure vessels have to be used to obtain the hydrate formation in complex fluids. Based on the MicroDSC technology, a new High Pressure MicroDSC with a vessel (0.7 cm3) operating up to 400 bars between -45 and 120°C is introduced for this type of research. An example of the use of the HP MicroDSC is given with the formation of gas hydrates in drilling muds. With the increasing number of deep offshore drilling operations, operators and service companies have to solve more and more complex technical challenges. Extreme conditions encountered at these depths require an adaptation of the drilling muds. The range of temperature (down to -1°C) and pressure (up to 400 bars) are favorable conditions to the formation of hydrates. HP MicroDSC is used to determine the thermodynamic properties and kinetics of hydrate formation in mud formulations, particularly in the presence of large amounts of minerals. The technique allows the detection of phase transitions vs. time, temperature and pressure. Using such a technique, dangerous areas of hydrate formation in drilling muds formulations (water-base and oil-base) can be predicted. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
In order to prevent the spontaneous ignition of nitrocellulose (NC), NC is stabilized by washing with industrial water in its synthesis process. However, there is a possibility that the components in industrial water contribute to the thermal stability of NC. In this way, the purpose of this study is to clarify the effect of industrial water components on the thermal stability of NC. In experiments, a heat flux calorimeter was used to observe the thermal behavior of NC with the residue of vaporized industrial water. The induction period of heat release of NC with 2-mass% residues was approximately 2–5 h shorter than that of NC alone whose induction period was observed at 7 h. Those results indicate that the residue destabilized NC. On the other hand, when the additive amount of the residue was increased, the induction period gradually increased as well. Based upon these results, we assume that inorganic salts contributing to stabilization and destabilization competitively coexist in the industrial water components. The same thermal analysis was performed on NC with CaCO3, CaSO4, CaCl, ZnSO4, NaCl, and CuCl. Those salts are predicted to exist in the industrial water. In the results, the induction period of NC with 2-mass% CaCO3 was approximately 15-h longer than that of NC alone, while the induction period with the inorganic salts CaSO4, CaCl, ZnSO4, NaCl, and CuCl was 4–5-h shorter. Therefore, when the industrial water components accumulate in NC, the destabilization by inorganic salts such as CaSO4, CaCl, ZnSO4, NaCl, and CuCl and the stabilization by compounds such as CaCO3 are thought to countervail against each other.  相似文献   

20.
Drilling fluids are widely used in the drilling of deep wells to clean and transport the rock cuttings, maintain the sidewall of oil well, lubricate and cool the drilling bit, and control the formation pressures. The present work aims at improving the high-temperature resistance of water-based drilling fluid by using the newly synthesized fluid loss additive named PAASD. This copolymer was obtained through the solution polymerization of four kinds of monomers. The synthesis conditions with the optimal API filtration were studied by single synthetic experiment, and the chemical structure of final product was confirmed by FTIR spectroscopy. The target product was carried out with thermal stability analysis, rheological property, filtrate property, temperature resistant capacity, salt tolerance capacity, micro-crosslink structure property, particle size distribution and the compatibility performance experiment. The results showed that PAASD was an efficient fluid loss additive, and the API filtration of fresh water drilling fluid containing 2% PAASD was only 5.2 mL, it was 10.6 mL after aging at the condition of 200°C and 16 h. Besides, PAASD has a good thermal stability, salt tolerance, and it could improve the rheological property of drilling fluid system obviously. Therefore, it could be used as fluid loss additive of water-based drilling fluid in salty and high-temperature environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号