首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein foam was explored as a foaming agent for enhanced oil recovery application in this study. The influence of salinity and oil presence on bulk stability and foamability of the egg white protein (EWP) foam was investigated. The results were compared with those of the classical surfactant sodium dodecyl sulfate (SDS) foam. The results showed that the EWP foam is more stable than the SDS foam in the presence of oil and different salts. Although, the SDS foam has more foamability than the EWP foam, however, at low to moderate salinities (1–3 wt% NaCl), both foam systems showed improvement in foamability. At a NaCl concentration of 4.0 wt% and above, foamability of the SDS foam started to decrease drastically while the foamability of the EWP foam remained the same. The presence of oil has a destabilizing effect on both foams but the EWP foam was less affected in comparison to the SDS foam. Moreover, increasing the aromatic hydrocarbon compound percentage in the added oil decreased the foamability and stability of the SDS foam more than EWP foams. This study suggests that the protein foam could be used as an alternative foaming agent for enhanced oil recovery application due to its high stability compared to the conventional foams.  相似文献   

2.
A simple mechanism regulating polymer mobility is demonstrated to determine initial and final growth states of solid‐state microcellular foams. This mechanism, governed by the extent of plasticization of the polymer by the dissolved gases, is examined with a mass balance model and results from foam growth experiments. Polycarbonate was exposed to CO2, which acted as both a plasticizing gas and a physical blowing agent driving foam growth. The polycarbonate specimens were saturated to the equilibrium gas concentration at 25 °C for CO2 pressures of 1–6 MPa in 1‐MPa increments. Equilibrated specimens were heated in a glycerin bath until thermal equilibrium was reached, and a steady foam structure was attained. Glycerin bath temperatures of 30–150 °C in 10 °C increments were examined. Using knowledge of gas solubility, the equation of state for CO2, the effective glass‐transition temperature as a function of gas concentration, and a model for mass balance within a solid‐state foam, we demonstrate that foam growth terminates when sufficient gas is driven from the polycarbonate matrix into the foam cells. The foam cell walls freeze at the elevated bath temperature because of gas transport from the polycarbonate matrix and the associated rise in the polymer glass‐transition temperature to that of the heated bath. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 868–880, 2001  相似文献   

3.
The stability and curvature of emulsions of H2O and CO2 are reported and analyzed in terms of measurements of interfacial tension versus formulation variables, including salinity, CO2 density, temperature and pH. Among the surfactants studied are, quaternary ammonium cationic ones with perfluoropolyether tails, block copolymer ionomers and a poly (hydroxyethyl methacrylate) with polydimethylsiloxane tails, and a nonionic ethylene oxide surfactant with a fluoroalkane tail. The interfacial tension measurements were made at surfactant concentrations from 0.05 to 1.0 wt% with a variable-volume pendant drop tensiometer up to 345 bar and 363°K. As a formulation variable was varied, the system reached a balanced state characterized by a minimum in interfacial tension, a loss in emulsion stability and in some cases an inversion from a W/C to C/W emulsion. Here the Marangoni-Gibbs stabilization weakens, and also it becomes easy to bend and rupture the surfactant monolayer, causing coalescence. Except in the case of the nonionic fluorinated surfactant C8F17—SO2NEt-(CH2CH2O)12–14CH3, the crossover from the CO2-continuous (W/C) to the H2O-continuous (C/W) emulsion occurred abruptly due to clouding of the surfactant out of the CO2 phase. For PFPE-TMAA, the plot of γ versus surfactant concentration revealed both pre-micellar aggregates and a critical micro emulsion, each of which was dependent on salinity.  相似文献   

4.
A series of novel Gemini surfactants Cn-pi-Cn with piperazine moiety as spacer was synthesized and characterized by IR, 1H NMR, and mass spectra. Their surface activities were evaluated by surface tension, electrical conductivity, and steady-state fluorescence. The obtained results indicated that the synthesized Gemini surfactants exhibited lower critical micelle concentration (cmc) and surface tension (γcmc) compared with traditional surfactants. The steady-state fluorescence measurement and electrical conductivity were recorded to demonstrate the accuracy of cmc values. In addition, the micellization was evaluated using conductivity measurement in the temperature range of 298–308 K. The foamability and foam stability of these Gemini surfactants were also examined. In which, the Gemini surfactant with the shortest chain (C12) showed the best foamability but the poorest foam stability. Hydrophile–lipophile balance and emulsifying ability were studied and a comparatively poor emulsifying ability displayed.  相似文献   

5.
Foam fluids are widely used in petroleum engineering, but long-standing foam stability problems have limited the effectiveness of their use. The study explores the synergistic effects and influencing factors of SiO2 nanoparticles (SiO2-NPs) with different wettability properties and three different surfactants. The paper investigates the foaming performance of different types of surfactants and analyzes and compares the stability of foam after adding hydrophilic and hydrophobic SiO2-NPs from macroscopic as well as microscopic perspectives, and the effects of temperature and inorganic salts on the stability of mixed solutions. The experimental results show that: 1) hydrophilic nanoparticles can significantly enhance the foam stability of amphoteric surfactants, with a small increase in the foam stability of anionic and cationic surfactants; 2) The concentration of nanoparticles did not have a significant effect on the stability of the cationic surfactants and this conclusion was verified in the experimental results of the surface tension measured below;3) The cationic surfactants showed better temperature resistance at temperatures of 50–90 °C. Both amphoteric surfactant solutions with the addition of hydrophilic SiO2-NPs or hydrophobic SiO2-NPs significantly improved the temperature resistance of the foam at high temperatures. The anionic surfactant solution with hydrophobic SiO2-NPs did not enhance the solution temperature resistance; 4) The surface tension of the surfactant solution gradually increases with increasing concentration of hydrophilic or hydrophobic SiO2-NPs and then levels off; 5) the hydrophilic SiO2-NPs had a significant effect on the salt tolerance of the anionic and amphoteric surfactant solutions. The salt tolerance of cationic surfactant solutions with hydrophobic SiO2-NPs was better than that of surfactants with hydrophilic SiO2-NPs.  相似文献   

6.

This study aimed to investigate CO2 absorption using chemical solvent of amine H2O-TEA-CO2 in presence of activated carbon (AC) particles. The studied experimental range includes the temperature in range of 293–333 K, pressure in range of 3.5–9.5 bar, the concentration of solvents in range of 2.5–8.5 wt%, and amount of activated carbon in range of 0.3–0.9 kg/m3. The central composite design (CCD) with four parameters of temperature, pressure, amine concentration, and active carbon was applied in 5 levels. The physical solubility CO2 in amine solutions decreases with the increasing temperature that indicates the process is exothermic. The optimal values of temperature, pressure, concentration, and active carbon are 303.0 K, 8.00 bar, 7.00 M, 0.75 g, respectively, and 25.99% for the input variables and desirability index of 0.732. The CO2 loading, absorption capacity, and absorption percentage are obtained in the range of 0.572–1.180 molCO2/molTEA, 0.208–0.506 wt%, and 12.73–32.61% in Triethanolamine (TEA) solutions in activated carbon, respectively. All dependent variables had a p value of less than 0.05, indicating that models were significant and substantial. The result showed that the addition of solid particles to chemical solvents effectively enhances CO2 absorption.

  相似文献   

7.
Nonylphenol-substituted dodecyl sulfonate (C12-NPAS) was synthesized via sulfonation-alkylation-neutralization using 1-dodecene, SO3, and nonylphenol as raw materials. The properties such as surface tension, interfacial tension (IFT), wettability, foam properties, and salinity tolerance of C12-NPAS were systematically investigated. The results show that the critical micelle concentration (CMC) of C12-NPAS was 0.22?mmol?·?L?1 and the surface tension at the CMC (γCMC) of C12-NPAS was 29.4 mN/m. When compared with the traditional surfactants sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), and linear alkylbenzene sulfonate (LAS), the surface properties of C12-NPAS were found to be superior. The IFT between Daqing crude oil and a weak-base alkaline/surfactant/polymer (ASP) oil flooding system containing 0.1?wt% of C12-NPAS can reach an ultralow level of 2.79?×?10?3 mN/m, which was lower than that found for the traditional surfactant heavy alkylbenzene sulfonate (HABS). The salinity and hardness tolerance of C12-NPAS were much stronger than those found for conventional surfactants, petroleum sulfonate, and LAS. C12-NPAS also shows improved wetting performance, foamability, and foam stability.  相似文献   

8.
In the present study, SiO2 nanoparticles were first hydrophobically modified and then added into anionic surfactant sodium dodecyl sulfate (SDS) stabilized water-based foam to improve the foam stability. The foam stability was experimentally evaluated by measuring surface tension, Zeta potential and half-life of the foam. The foam stabilizing mechanism was also studied from a micro perspective by molecular dynamics simulation through analyzing the equilibration configuration and MSD curve of both SDS surfactant and water molecules. The results show that foam exhibits an optimal stability when SiO2 concentration is 0.35 wt% under a specific surfactant concentration (0.5 wt%) in this work. The addition of SiO2 nanoparticles with suitable concentration could improve the adsorption between SDS molecules and nanoparticles, thus limiting the movement of SDS and restricting the movement of surrounding water molecules, which is beneficial to enhance the foam stability.  相似文献   

9.
The effect on β‐lactoglobulin foamability and foam stability of the poly(ethylene oxide)‐poly(propylene oxide) block copolymers F127 (PEO99‐PPO65‐PEO99), molecular weight 12500 g/mol, and P85 (PEO26‐PPO39‐PEO26), molecular weight 4600 g/mol, has been investigated at constant protein concentration, 10 µM (0.2 mg/L), and varying block copolymer concentrations, ranging from 0.02 to 1600 µM. Foam was generated by means of air sparging and the foam volume and liquid volume of the foam were measured for one hour. It was found that foam stabilized by F127 or P85 in the concentration range 20–1600 µM contained a larger liquid volume initially than pure β‐lactoglobulin foam. Furthermore, β‐lactoglobulin foamability was only marginally affected by the presence of F127, while it was reduced in an interval of low P85 concentrations. The protein foam stability was retained in the presence of the larger polymer F127, whereas P85 largely reduced the stability, indicating that the size of the polymeric surfactant is important. The results are discussed in relation to surface rheological properties and forces acting across foam films. Steric repulsion generated between the surfaces of foam films is suggested to be the main stabilizing factor in dry foam containing F127. The instability of the mixed β‐lactoglobulin/P85 system is suggested to be caused by two effects. First, there are incompatible stabilization mechanisms of block copolymer and protein, as supported by previous surface rheological data. Second, there is a reduced importance of long‐range steric repulsion when P85 is added, compared to the case where F127 and β‐lactoglobulin are mixed.  相似文献   

10.
Three different types of foaming agents including hydrocarbon surfactant TQ01, partial fluorinated surfactant BF01, and per-fluorinated surfactant QF01 exhibited good foaming ability and foam stability under 95°C high temperature and 32,325 ppm salinity conditions. The oil-tolerance ability order with respect to Malaysia Off-shore (MOS) crude oil for surfactant TQ01, BF01, and QF01 is TQ01 < BF01 < QF01. Introduction of polymer into the foam formula could significantly increase foam stability. Different polymers show different abilities of increasing foam stability. Spreading coefficient and entering coefficient are close to zero for surfactant BF01 foaming system and much less than zero for surfactant QF01 foaming system, so the oil-resistance ability of foam generated by surfactant QF01 is the strongest. For surfactant TQ01 foaming system, the calculated spreading coefficient and entering coefficient are greater than zero; therefore, the TQ01 foam system is more sensitive to MOS crude oil and its oil-resistance ability is the poorest. Core flooding test indicated that using the 0.4% BF01 and 0.2% YH1096 combined foaming formula could increase the pressure drop across the porous media significantly, indicating that strong foam was generated in the presence of MOS crude oil.  相似文献   

11.
The dispersion characteristic of nanoparticles is of more interest in some engineering applications, including polymer filling, foam stability, chemical catalysis, and materials surface package. In this paper, the surface modification of SiO2 nanoparticles was carried out based on molecular dynamics simulation. The characteristics of aggregation and diffusion of SiO2 nanoparticles were explained by the radial distribution function (RDF), concentration profile, length distribution, mean squared displacement (MSD), and microscopic testing (MT). The results showed that the orbital provided by the three types of atoms (H, O, and Si) corresponding to the different bandwidths caused the energy alternation of state density. According to the results of RDF, the H O bond energy mainly provided by the water molecules showed the maximum bond energy with 463 kJ/mol. The results indicated that the bonds breakage and formation were accompanied by changes in total energy, kinetic energy, non-bond energy, and potential energy. After the modification of SiO2 nanoparticles, the concentration profile of the water molecules decreased first at 1–8.5 Å and then increased at 8.5–17.2 Å, but the length distribution climbed to 15.7 at 0.975 Å. When the temperature reached 398 K, the peak value of the length distribution declined to 13.6 Å and the relative concentration profile of water molecules fluctuated around 1.0. With the increase of salinity, the peak value of length distribution reached 15.7 at 0.975 Å, but the concentration profile of water molecules at 3.1–9 Å decreased quickly and then gradually increased. The results of MSD and MT about water molecules presented the largest diffusion coefficient appeared at 398 K and had the best dispersion effect owing to the average kinetic energy among the molecules. Conversely, the diffusion coefficient decreased with the incremental solution salinity because the inhabitation of sodium for the motion of water molecules resulted in the ion bridging and hydrogen bonding.  相似文献   

12.
A complete characterization of sewage sludge collected from five biological waste water treatment plants was done to determine physico-chemical parameters, heavy metals and alkylphenols, making special emphasis on sampling, homogenization, and sample pre-treatment. Ultrasonic extraction followed by gas chromatrography coupled with mass spectrometry was used to evaluate the effect of sample pre-treatment (untreated sample, freeze-drying, drying at 40 °C or drying at 100 °C) on the concentration of octylphenol (OP), nonylphenol (NP) and nonylphenol ethoxylates (NP1EO, NP2EO). Untreated samples and samples dried at 100 oC gave concentration levels up to 62% and 89% lower, respectively, than freeze-dried samples. In 50% of cases, freeze-dried samples led to significantly higher concentrations than those obtained by drying at 40 °C. Thus, freeze-drying is the recommended sample pre-treatment to prevent possible losses of OP, NP, and NP1EO. Using this methodology, concentrations detected were from 3.2 to 199 mg kg−1 being NP followed by NP1EO found in highest concentration. The total concentration of NP and NP1EO exceeded the limit of 50 mg kg−1 proposed by the draft European directive on sewage sludge in three out of five samples studied. Contrarily, heavy metals were below the legislated values.  相似文献   

13.
The thermo-oxidative stability of melt processed polyethylene composites with the two fullerenes C60 and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was studied with the aim of comparing the stabilization effect of both fullerenes on three different polyethylenes (PE). The results obtained show that, irrespective of the specific polyethylene being considered, C60 loadings as low as 1.0 wt% cause a dramatic increase in the thermo-oxidative stability of the corresponding composites (up to 64.8 °C at T2% and 113.8 °C at T5%, TX% being the temperature corresponding to a mass loss of X wt%), in agreement with previous reports. Furthermore, and more importantly, this work shows for the first time that the thermo-oxidation stability effect caused by PCBM is even higher than that of C60, the difference between both being particularly significant in the early stages of degradation, i.e. for mass losses ≤2 wt%. For example, polyethylene composites with 1.0 wt% PCBM show T2% values which are systematically higher than those of the corresponding composites with 1.0 wt% C60, the difference between the T2% values of the two composites being 38.8 °C, 67.1 °C and 26.4 °C in the three different polyethylenes considered. Therefore, when compared with C60, PCBM is particularly more effective at delaying the beginning of the thermo-oxidative degradation. According to our results, PCBM loadings as low as 1.0 wt% can increase the thermo-oxidative stability of polyethylene composites by more than 130 °C and these are, as far as we know, the highest thermo-oxidative stability results induced by nanoparticles ever reported in the literature for polyethylene.  相似文献   

14.
Colemanite (Ca2B6O11.H2O) in powder form was filled to polypropylene (PP) at concentrations of 5, 7.5, 11.25, 16.875, and 25.312 wt%, and filled PP granules were obtained. To prevent oxidation, an antioxidant (Songnox 1010) was added to the colemanite‐filled polypropylene mixture at a ratio of 0.2 wt%. The rheological properties of the resulting composite material were determined using a Melt Flow Index testing device, at four separate pressure settings (298.2, 524, 689.5, and 987.4 kPa) and four separate temperature settings (190°C, 200°C, 210°C, and 220°C). The viscosity, shear rate, shear stress, and power law index (n) values of the colemanite‐filled PP were measured as part of the testing conducted. The study determined that viscosity values increased by approximately 60% in response to increasing colemanite content in the resulting filled material, while shear rate values decreased by 62%. The viscosity values were found to decrease with increasing temperature and pressure values, while shear rate values were found to increase. Additionally, Power Law Index value was found to vary between 0.561 and 0.687, with an average value of 0.608 based on the colemanite content used. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Nonaqueous foams stabilized by lamellar liquid crystal (L alpha) dispersion in diglycerol monolaurate (designated as C12G2)/olive oil systems are presented. Foamability and foam stability depending on composition and the effects of added water on the nonaqueous foaming behavior were systematically studied. It was found that the foamability increases with increasing C12G2 concentration from 1 to 3 wt% and then decreases with further increasing concentration, but the foam stability increases continuously with concentration. Depending on compositions, foams are stable for a few minutes to several hours. Foams produced by 10 wt% C12G2/olive oil system are stable for more than 6 h. In the study of effects of added water on the foaming properties of 5 wt% C12G2/olive oil system, it was found that the foamability and foam stability of 5 wt% C12G2/olive oil decreases upon addition of 1 wt% water, but with further increasing water, both the foamability and foam stability increase. Foams with 10% water added system are stable for approximately 4 h. Phase behavior study of the C12G2 in olive oil has shown the dispersion of L alpha particles in the dilute regions at 25 degrees C. Thus, stable foams in the C12G2/olive oil system can be attributed to L alpha particle, which adsorb at the gas-liquid interface as confirmed by surface tension measurements and optical microscopy. Laser diffraction particle size analyzer has shown that the average particle diameter decreases with increasing the C12G2 concentration and, hence, the foams are more stable at higher surfactant concentration. Judging from foaming test, optical micrographs, and particle size, it can be concluded that stable nonaqueous foams in the studied systems are mainly caused by the dispersion of L alpha particles and depending on the particle size the foam stability largely differs.  相似文献   

16.
The main aim of this work was to synthesize the magnesium orthostannate doped by terbium cations and tested whether these materials can be used for colouring of the different materials, e.g. organic binder and ceramic glazes. Initial composition of pigments was counted according the general formula 2MgO(1 − x)SnO2xTbO2, where values of x varied from 0.1 to 0.5 in 0.1 steps. The simultaneous TG/DTA measurements of mixture containing tin oxide, magnesium carbonate hydroxide and terbium oxide showed that the formation of a new compound started at temperature 1,029 °C, but single-phase system was not prepared. Granulometric compositions of samples that were prepared by calcining at temperatures 1,300–1,400 °C are characterized by values of median (d 50) in range 4–8 μm. The calcining temperature 1,500 °C caused the increase of the particle sizes at around 12 μm. The composition of sample 2MgO–1.5SnO2–0.5TbO2 and heating temperature 1,500 °C are the most suitable conditions for preparation of colourfully interesting pigment that can be recommended also for colouring of ceramic glazes. Especially, for colouring of decorative lead containing glaze G 07091 containing 5 wt% of PbO and 8 wt% of Al2O3.  相似文献   

17.
The radiolysis of methane (0.7 MeV electron beam) was studied as a function of its concentration at two doses: 5 and 20 kGy. In both cases the G (–CH4) value raised with the increase of the substrate concentration. Thereby the yields observed at 20 kGy are much lower, because of recombination processes. Results are also reported on the conversion of the gas mixture CH4:CO2:He=1:1:1 into synthetic gas (H2/CO) at 500 °C, using two catalysts : (N5) and (N20), containing 5 wt% Ni and 20 wt% Ni, respectively, supported on γ-Al2O3. In an experimental series the catalysts (N5) and (N20) were treated by irradiation (4 MGy dose) before use. The highest conversion yields (above 35%) were observed by implementation of N5 and N20 catalyst at 500 °C under the influence of electron beam radiation.  相似文献   

18.
A study concerned to thermogravimetric analysis is performed in cesium dihydrogen phosphate (CsH2PO4) that was synthesized, using cetyltrimethylammonium-bromide (CTAB), polyoxyethylene-polyoxypropylene (F-68) and mixture of (F-68:CTAB) with two mole ratio 0.06 and 0.12 as surfactant. The dehydration behavior of particles was studied using thermal gravimetric analysis and differential scanning calorimetric. Subsequently, the experimental results indicated that the first dehydration temperature in the range of 237–239 °C upon heating, the second peaks occur at temperature range 290–295 °C and overlapping in the thermogravimetric events is observed. The mass loss values are obtained in the range of 6.62–6.97 wt% that is less than reported theoretical value 7.8 wt%. These values show well compatibility of reaction CsH2PO4 to Cs2H2P2O7 with 3.92 wt% whereas mass loss value of CsH2PO4 to CsPO3 is less than theoretical value 7.8 wt%. The activation energy of two steps dehydration are calculated using Kissinger equation for the samples synthesized via CTAB and (F-68) with minimum value mass loss 6.62% and maximum value mass loss 6.97%, respectively. The calculation results reveal that the reaction rate in the first step (CsH2PO4 → Cs2H2P2O7) is faster than the second step (CsH2PO4 → CsPO3). The weight loss values of the samples demonstrate that existence of CTAB can be considered as effective factor which prevents more weight loss during the dehydration process.  相似文献   

19.
Pyrolysis of glycerol has been identified as a possible route for producing high added value fuels like renewable hydrogen (H2). Crude glycerol (CG) is the main byproduct of biodiesel industry and without purification it is a low added value material due to the presence of impurities. Co-pyrolysis of CG with biomass may improve the efficiency of the process and as a primary step of gasification give important information concerning the maximization of H2 concentration in the produced gas. Moreover, the thermochemical treatment of crude glycerol–biomass mixtures may offer several economic and environmental advantages in biodiesel industry and reduce the cost of biodiesel production. A mixture of CG with olive kernel (OK) was used as pyrolysis feed material. Pyrolysis of a 25 wt% mixture of CG with OK at high temperature (T = 720 °C) seemed to promote steam reforming reactions leading to an increase of H2 concentration of 11.6 vv% in the pyrolysis gas in comparison to H2 in gas obtained by low temperature pyrolysis (T = 520 °C).  相似文献   

20.
Chemical complex borohydride is a promising hydrogen storage material due to its large gravimetric and volumetric hydrogen capacities. However, the high dehydrogenation temperature and sluggish kinetics still place strong restrictions on its practical application in the hydrogen storage field. In this work, a synergetic approach of partial cation substitution and catalysis is developed to enhance the hydrogen storage properties of LiBH4. The Li/Mg based dual-cation borohydride (LiMg2(BH4)5, LMBH) was successfully synthesized by wet chemical ball milling of LiBH4 and MgCl2. The optimal (LMBH (4.5:1) sample, LiBH4 and MgCl2 in molar ratios of 4.5:1, possesses a maximum hydrogen desorption capacity (11.27 wt%) and the outstanding initial decomposition temperature (~250 °C). Importantly, the LMBH (4.5:1) doped with TiF3 shows a remarkable onset dehydrogenation temperature as low as 97.2 °C, which is about 190 °C lower than that of pristine LiBH4. The LMBH (4.5:1) doped with TiF3 system releases 7.98 wt% H2 within 170 min below 350 °C. And the dehydrogenation product of doped composite can reversibly absorb ~4.72 wt% H2 at a relatively moderate temperature of 280 °C, which is substantially lower than the reversible hydrogen absorption temperature of previous modified borohydride systems. Based on the structural characteristic analyses, the TiF3 reacts with LMBH (4.5:1) to in-situ form actual catalytic components of TiB2 and TiH2 as the actual catalysts for LMBH (4.5:1), resulting in the improved hydrogen re/dehydrogenation properties. The synergetic modification of Li/Mg dual-cation substitution and TiB2/TiH2 catalysis may lead to the development of light-metal borohydrides with outstanding hydrogen storage properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号