共查询到20条相似文献,搜索用时 15 毫秒
1.
《Arabian Journal of Chemistry》2023,16(5):104680
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future. 相似文献
2.
《Arabian Journal of Chemistry》2022,15(7):103864
A search for anticancer agents has prompted the design and synthesis of new chalcone, pyrazoline and pyrimidine derivatives as potential epidermal growth factor receptor (EGFR) kinase inhibitors. These derivatives’ binding affinities were predicted by AutoDock, which showed that chalcone, pyrazoline and pyrimidine derivatives as EGFR-kinase inhibitors have good binding energies, ranging from ?10.91 to ?7.32 kcal/mol. These compounds were synthesized and characterized using elemental analysis (CHN analysis) and spectroscopic techniques (FTIR and NMR). Among the pyrazoline derivatives, 4Aiii has revealed a superior in vitro activity, inhibiting the EGFR kinase even at a low concentration of 0.19 μM compared to the pyrimidine derivative, 5Bii. In contrast, the cytotoxic effect of these derivatives was studied against hormonal and non-hormonal breast cancer cell lines. Most of the pyrazoline derivatives were able to express their cytotoxic effect efficiently against hormonal breast cancer but only one pyrimidine derivative managed to express its activity against hormonal breast cancer. 相似文献
3.
《Journal of Saudi Chemical Society》2023,27(2):101598
A novel series of isatin hybrids 5a-g was designed, synthesized, and characterized spectroscopically. The synthesized compounds were evaluated for their cytotoxic activity against the human breast cancer cell line (MCF-7) by in vitro MTT assay. Amongst the tested compounds, 5e compound bearing benzyl moiety at N4 piperazine was found to be the most active with the promising IC50 (12.47 µM). Moreover, the active compounds 5e and 5g were subjected to antitumor evaluation (in vivo) against Dalton’s ascitic lymphoma (DAL) cell line and the results suggested that the best active compound 5e can normalize the blood picture in comparison to the standard drug. An in silico molecular docking study using the crystal structure of Hsp90 protein described the role of significant protein–ligand interactions and revealed more insights into the binding mode. The drug-likeliness of the compounds was predicted based on Lipinski's rule of five and pharmacokinetic ADME parameters. Hence, the synthesized isatin hybrids could be novel starting point anticancer lead compounds demonstrating drug-like properties which can be explored further for anticancer drug discovery. 相似文献
4.
《Arabian Journal of Chemistry》2022,15(2):103632
Libidibia ferrea (Mart. ex Tul.) L.P. Queiroz is a arboreal species found in the Caatinga from Northeast of Brazil that has been used in popular medicine as an anti-inflammatory, healing, analgesic and for the treatment of respiratory system disorders. Therefore, the objective of this work was to evaluate the composition of ethanol extracts from the leaves and inner bark of Libidibia ferrea, as well as to verify its antibacterial activity and as a potential inhibitor of the TetK efflux pump in Staphylococcus aureus strains, in addition to investigating the toxicity of the extracts in a Drosophila melanogaster model. The analysis and quantification of the extracts markers was performed by High Performance Liquid Chromatography (HPLC). To determine the Minimum Inhibitory Concentration (MIC) broth microdilution tests were carried out. The evaluation of efflux pump inhibition was performed by modifying the MIC of antibiotics and ethidium bromide. Mortality and negative geotaxis tests were used to verify the toxicity of extracts on D. melanogaster. Hydrolysable tannins (gallic acid and ellagic acid) and flavonoids were found in HPLC analysis. The extracts did not show antibacterial activity, demonstrating a MIC ≥ 1024 µg/mL, however the ethanolic extract of the leaves decreased the MIC of the antibiotic from 64 µg/mL to 16 µg/mL, but this effect is not associated with the inhibition of the efflux pump. The extracts did not show toxicity in a D. melanogaster model. This is the first study to evaluate the antibacterial activity of L. ferrea extracts on the IS-58 strain of S. aureus, as well as the first to investigate its toxicity using D. melanogaster. From the results, further studies are needed to determine the mechanisms of action of the extract with other antibiotics. 相似文献
5.
《Arabian Journal of Chemistry》2022,15(4):103720
Graviola, soursop, or guanabana (Annona muricata L.), is an ethnomedical fruit consumed to alleviate headache, diarrhea, diabetes, and cancer. Pericarp is the inedible part of graviola least studied in comparison to seeds and leaves, even thought, it contains the highest concentration of graviola total polyphenols. Anticancer effect of graviola pericarp has been demonstrated in crude extracts attributing the effect to acetogenins, however, crude extracts contain several active molecules. Thus, the present work aimed to fractionate and purify an ethanolic crude extract from graviola pericarp. Purified graviola pericarp fraction (PGPF) was evaluated on cancerous and non-cancerous cell lines, and then was identified by NMR, TOF-MS, and HPLC. Finally, an in silico analysis was performed to predict targets cancer-related of the molecule detected. Our results revealed IC50 values for cervix adenocarcinoma (HeLa), hepatocellular carcinoma (HepG2), triple-negative breast cancer (MDA-MB-231), and non-cancerous cell line (HaCaT) of 92.85 ± 1.23, 81.70 ± 1.09, 84.28 ± 1.08, and 170.2 ± 1.12 µg PGPF/mL, respectively. In vitro therapeutic indexes estimated as quantitative relationship between safety and efficacy of PGPF were 1.83, 2.08, and 2.02 for HeLa, HepG2, and MDA-MB-231, respectively. The NMR analysis revealed astragalin (kaempferol-3-O-glucoside) in PGPF, a flavonoid not reported in graviola pericarp until now. Astragalin identity was confirmed by TOF-MS and HPLC. In silico results support previous reports about astragalin modulating proteins such as Bcl-2, CDK2, CDK4, MAPK and RAF1. Also, results suggest that astragalin may interact with other cancer-related proteins not associated previously with astragalin. In conclusion, astragalin may be contributing to the anticancer effect observed in graviola pericarp extracts. 相似文献
6.
《Arabian Journal of Chemistry》2022,15(9):103970
Ethnopharmacological relevanceMetabolic syndrome is closely related to the intestinal microbiota and disturbances in the host metabolome. Hyperuricemia (HUA), a manifestation of metabolic syndrome, can induce various cardiovascular diseases and gout, seriously affecting a patient’s quality of life. Astragalus membranaceus has a long history as a commonly used traditional Chinese medicine to treat kidney disease in China and East Asia.Materials and methodsWe compared the therapeutic effect of benzbromarone and two different doses Astragalus membranaceus ultrafine powder (AMUP) in rats with HUA. Ultra-performance liquid chromatography-mass spectrometer was used to analyze the AMUP metabolism in the plasma, urine, and feces. Further, 16S ribosome RNA sequencing and feces metabolomic were performed to capture the variation of the gut microbiota and metabolites changes before and after drug administration.ResultsAMUP had a notable impact on reducing blood uric acid levels while protecting the liver and kidney. Drug metabolism analysis demonstrated that effective constituent flavonoids are distributed in the blood, whereas saponins remain in the intestine. Gut microbiota analysis showed that low-dose AMUP ameliorated HUA-induced gut dysbiosis by reducing the abundance of harmful bacteria and increasing that of some beneficial bacteria with anti-inflammatory properties, such as Clostridia, Lachnospiraceae, and Muribaculaceae. In addition, HUA-induced changes in metabolite contents in bile acid and adrenal hormone biosynthesis pathways were restored after treatment with AMUP.ConclusionLow-dose AMUP exerts remarkable therapeutic effects on HUA by regulating the gut microbiome and mediating gut metabolism pathways associated with uric acid excretion. 相似文献
7.
《Arabian Journal of Chemistry》2020,13(11):8133-8145
Humans and animals are frequently exposed to heavy metals in the environment, which are highly toxic to the physiological milieu and organs of the body. We investigated the ameliorative potentials of ethanol leaf extract of Ruspolia hypocrateriformis against redox imbalance due to exposure of rats to heavy metals. The in vitro study explored the antioxidant potentials of the ethanol leaf extract using 1,1-diphenyl-2-picryl hydrazyl, nitric oxide and ferric reducing antioxidant potential assays respectively. HPLC was used to quantify the amount of flavonoids and phenolic acids in the extract. For in vivo study, 30 rats were randomly divided into 5 groups. Group A received normal saline. Group B received combined solution of Lead Nitrate and Mercury Chloride (11.25 mg/kg and 0.4 mg/kg) per Bwt/day. Group C, D and E were administered with the leaf extract at doses of 200, 400 and 600 mg/kg body weight respectively for 28 consecutive days. Biomarkers of hepatic dysfunctions and oxidative stress were investigated in the study rats. The HPLC study revealed high amount of gallic and ferulic acids (17.86 ± 2.68), which are the major phenolic compounds found in the extract. The extract further exhibited high antioxidant potentials in inhibiting the scavenging activity of free radicals produced in vitro. Interestingly, 600 mg/kg dosage of the leaf extract successfully ameliorated the distorted redox imbalance and oxidative damage in the liver of the rats caused by exposure to the heavy metals. Leaf extract of Ruspolia hypocrateriformis demonstrated strong antioxidant potentials, which could be exploited in pharmaceutical preparations. 相似文献
8.
《Arabian Journal of Chemistry》2022,15(5):103756
Heterocyclic compounds occupy an important position in chemistry because of their wide range of uses in drug design, photochemistry, agrochemicals, and other fields. Indole and indazole scaffolds are available from natural and synthetic sources, and molecules containing these scaffolds have been shown to have various biological effects, including anti-inflammatory, antibacterial, antiviral, antifungal, analgesic, anticancer, antioxidant, anticonvulsant, antidepressant, and antihypertensive activities. Indole and indazole molecules bind to receptors with high affinity, and thus are useful for the study of bioactive compounds involved in multiple pathways. In this review, we highlight the antihypertensive activity and the mechanisms of action of indole and indazole derivatives. In addition, structure–activity relationship studies of the antihypertensive effect are presented. 相似文献
9.
《Arabian Journal of Chemistry》2022,15(12):104271
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation. 相似文献
10.
《Arabian Journal of Chemistry》2022,15(8):103987
Inspired by the wide application of amides in plant pathogens, a series of novel 1-substituted-5-trifluoromethyl?1H?pyrazole-4-carboxamide derivatives were designed and synthesized. Bioassay results indicated that some target compounds exhibited excellent and broad-spectrum in vitro and certain in vivo antifungal activities. Among them, the in vitro EC50 values of Y13 against G. zeae, B. dothidea, F. prolifeatum and F. oxysporum were 13.1, 14.4, 13.3 and 21.4 mg/L, respectively. The in vivo protective activity of Y13 against G. zeae at 100 mg/L was 50.65%. SAR analysis revealed that the phenyl on the 1-position of the pyrazole ring was important for this activity. An antifungal mechanism study of Y13 against G. zeae demonstrated that this compound may disrupt the cell membrane of mycelium, thus inhibiting the growth of fungi. These mechanistic study results were inconsistent with those for traditional amides and may provide a novel view for deep study of this series of pyrazole carboxamide derivatives. 相似文献
11.
《Arabian Journal of Chemistry》2022,15(7):103945
Cryptosporidiosis is a global zoonotic infection that causes water-borne epidemics of diarrhea. Nevertheless, there are few available therapies for cryptosporidiosis. However, the gold standard drug nitazoxanide (NTZ) has limited efficacy in malnourished and immunocompromised patients. Furthermore, Verbena officinalisL. is a herbal plant widely used in traditional medicine to cure several health disorders and is recognized to possess numerous therapeutic applications. In the present study, the phytochemical composition of aerial part extract from Verbena officinalis was investigated via LC-ESI-MS/MS.Furthermore, the anti-cryptosporidial activity was also performed using an animal model. Fifty mice were divided into 5 groups; GI: non-infected (Negative control), GII: infected non treated (positive control), GIII: infected, treated with NTZ, GIV: infected, treated with V. officinalis n-butanol extract, GV: infected, treated with a combination of NTZ and V. officinalis. Parasitological examination revealed a highly significant difference (P-value < 0.001) between GIII, GIV, and GV compared to GII regarding the mean number of Cryptosporidium spp. oocyst in the stool. Moreover, GV showed the best efficacy with a percentage of 87%. Also, histopathological examination showed variable degrees of improvement in the villous broadening, and the inflammatory infiltrates in the small intestine with a reduction of hepatocyte degeneration and mononuclear infiltration in GIII, GIV, and GV compared to GII, with the best results seen in GV. Additionally, the chemical profiling of n-butanol extract identified 16 secondary metabolites comprising flavonoids, phenolic acids, phenylethanoids, and coumarins. In conclusion, V. officinalis is an intrinsic supplier of biologically active metabolites with outstanding anti-parasitic and possible anti-inflammatory effects. 相似文献
12.
《Arabian Journal of Chemistry》2022,15(10):104150
The chemical investigation of the ethyl acetate extract of the stem bark of Staudtia kamerunensis and sap led to the isolation of six compounds which included three isoflavonoids: biochanin A (1), formononetin (2) and 3-(1,3-benzodioxol-5-yl)-5,6,7-trimethoxy-4H-1-benzopyran-4-one (3), one flavonoid: (-) epicatechin (4) and two pentacyclic triterpenoids (oleanan-12-ene-2α,3β -diol (5) and 2α,3β-dihydroxylup-20-ene (6). They were characterized by HREIMS (High Resolution Electron Ionisation Mass Spectrometry), NMR spectroscopy (1D and 2D) and comparison with existing data in literature. The crude extract and isolates were tested against twelve bacterial strains namely; Bacillus subtilis, Staphylococcus epidermidis, Enterococcus faecalis, Mycobacterium smegmatis, Staphylococcus aureus, Enterobacter cloacae, Klebsiella oxytoca, Pseudomonas aeruginosa, Proteus vulgaris, Escherichia coli, Proteus mirabilis and Klebsiella pneumonia. Streptomycin, nalidixic acid and ampicillin were used as standard antibacterial drugs. The results revealed significant antibacterial activity for both the ethyl acetate partition and for the tested compounds, with the lowest MIC value being 15.625 μg/mL. A synergistic activity of the isolated triterpenoids was evaluated with interesting results. On a general note, the antibacterial activity of compound 5 was doubled specifically against Gram-negative bacterial strains. This could be a therapeutic antimicrobial pathway in face of the rising bacterial resistance. To the best of our knowledge, it is the first time that flavonoids and triterpenoids are isolated from this genus and species. It is also the first report of antibacterial studies on this species. 相似文献
13.
《Arabian Journal of Chemistry》2022,15(1):103507
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource. 相似文献
14.
《Arabian Journal of Chemistry》2022,15(7):103892
The purpose of this study was to illustrate the mechanism of “enzyme inactivation and toxicity reduction” of Fructus Tribuli (FT) after being heating processed. Ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was used to quantitatively analyze the contents of four steroidal saponins in crude Fructus Tribuli (CFT) and stir-fried Fructus Tribuli (SFT) under different storage times at room temperature. The enzyme activity of β-D-glucosidase in CFT and SFT were determined and calculated by ultraviolet–visible spectrometry (UV-VIS spectrometry). In addition, the enzyme hydrolysates of FOT and tribuluside A were qualitatively analyzed by ultra-high-performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). The hepatorenal toxicity of spirostanol saponins in FT were further confirmed by in vivo and in vitro experiment. This study confirmed that “enzyme inactivation and toxicity reduction” was one of the reasons why the stir-frying can reduce hepatorenal toxicity of FT, and further enriched the exploration on the mechanism of processing toxicity reduction. 相似文献
15.
《Arabian Journal of Chemistry》2022,15(5):103746
In this study, a new series of aliphatic, cyclic, and heterocyclic derivatives of haemanthamine was designed and synthesized to enhance its inhibitory effect on the proliferation and viability of cancer cells. A library of haemanthamine derivatives was subjected to 10 μM single-dose cytotoxicity screening against a panel of human cell lines of various histotypes. Initial cytotoxicity evaluation of the parent haemanthamine (1) and a series of twenty-nine (2–30) semisynthetic analogues showed that for some of the newly formed derivatives, a certain cytotoxic effect was observed, in one case even higher than that of the parent compound. Specifically, 11-O-(4-chloro-3-nitrobenzoyl)haemanthamine (21) showed an enhanced antiproliferative effect, where the mean growth percent (GP) value was 5% compared to haemanthamine, leading to a decrease in the GP to 25%. Among ten cell lines tested, derivative 21, bearing a substituted aromatic ester bond via C-11 of haemanthamine, had excellent activity for inhibiting the growth of HeLa (IC50 = 0.2 ± 0.1 μM), A549 (IC50 = 1.7 ± 0.1 μM) and HT-29 (IC50 = 2.2 ± 0.1 μM) cells. When evaluating response kinetics, we found that 21 and haemanthamine dose- and time-dependently suppressed the proliferation of A549 cells. In contrast to haemanthamine (1), Trypan blue and lactate dehydrogenase (LDH) release assay revealed that 21 was capable of reducing the survival of A549 cells. 相似文献
16.
《Arabian Journal of Chemistry》2022,15(10):104128
The aim of the present study was to magnetize Plantago ovata Forssk. hydrogel and produce a nanosphere system to carrier mefenamic acid as the drug model. For this propose, P. ovata seeds hydrogel (POSH) was extracted and magnetized by Fe3O4 being functionalized using tetraethyl orthosilicate and trimethoxyvinysilane. Thereafter, mefenamic acid (MFA) was loaded on the carrier system. The final product, as the magnetic drug loaded nanosphere (Fe/POSH/MFA), was fully characterized through different techniques involving X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating-sample magnetometer (VSM), thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and FT-IR spectroscopy. The results confirmed the successful production of the drug loaded nanosphere system with particles magnetization of 25 emu/g over a range size of 40–50 nm. However, the size distribution less than 100 nm was measured through DLS analysis. The hydrogel showed a pH sensitivity swelling behavior representing the best efficacy at pH 7.4. The efficiency of the drug encapsulation was found to be 64.35%. The drug releasing was studied using a dialysis bag at pH = 7.4. The highest in vitro drug releasing was found to be 57.3 ± 0.6% after 72 h, as well. The findings of the current report account for the potential use of P. ovata hydrogel as an effective delivery system for encapsulation of water insoluble basic drugs, e.g., MFA in a magnetized carrier system. 相似文献
17.
Recent progress on material designs merged with nanotechnology and biotechnology strategies has advanced studies of complex biological samples on electrodes for cytochrome P450 (CYP)–driven biocatalytic reactions (e.g. liver membrane fractions, cells, and various organ-specific CYP extracts). In addition, protein engineering of CYP enzymes with their reductase partner in membranes (e.g. baculovirus- or Escherichia coli bacteria–expressed CYP microsomes) and other recombinant strategies (e.g. engineered CYP and reductase fusion domains and site-directed CYP mutagenesis) are promising sustainable approaches for offering abundant sources of CYP enzymes for electrocatalytic applications. The combination of in silico and experimental electroanalytical methods with hyphenated approaches and biological assays can offer early and rigorous profiling of new drugs and specialty chemicals for safe exposure and beneficial use. 相似文献
18.
《Arabian Journal of Chemistry》2022,15(9):104055
Due to the presence of various phenolic compounds in D.sophia, this plant may have an inhibitory effect on α-Glc and ultimately diabetes control. Therefore, this work aims to scrutinize total phenolic, flavonoid contents, antioxidant capacity, and α-Glc inhibitory activity in aerial parts of methanolic D.sophia extract. The methanolic flower extracts were selected from among aerial parts for the experimental study of anti-diabetic effects by α-Glc inhibitory assays. The flower extracts were also studied by GC/MS to detect the compounds. The total phenolic and flavonoid contents were 21.38 ± 0.93 GAE/g and 96.2 ± 0.20 QE/g, respectively. The IC50 value of flower extract for α-Glc inhibition with mixed (Competitive/non-competitive) mode was found to be 20.34 ± 0.11 mg/ml. Furthermore, in-vivo studies showed that the blood glucose level reduced after consumption of flower extract compared to the control group. Twenty-one compounds were identified by GC/MS technique. These compounds were assessed for high docking scores against α-Glc in silico. Docking score calculations exhibited that the DES-α-Glc complex had a significantly higher binding energy (-6.13 Kcal/mol) than other compounds. The DES-α-Glc complex which displayed a higher docking energy value than the ACR was subjected to MDs studies. The findings of this study suggest that the flower extract of D.sophia can be used as a suitable additive in syrups or foods with anti-diabetic capacity. 相似文献
19.
《Arabian Journal of Chemistry》2023,16(1):104417
Gualou-Xiebai-Banxia decoction (GXB) is a famous classical traditional Chinese medicine (TCM) formula for the treatment of coronary heart disease (CHD, namely chest stuffiness and pain syndrome in Chinese medicine). Compared with Gualou-Xiebai-Baijiu decoction, which only consists of Trichosanthis Pericarpium (TP), Allii Macrostemonis Bulbus (AMB) and wine, GXB comprises one additional herbal medicine, Pinellinae Rhizoma Praeparatum (PRP). However, due to a lack of kinetic profile studies on GXB, its in vivo components with high exposure remain unknown, making it difficult to interpret bioactive components likely linked to its efficacy, but also fails to provide substance-related evidence for reflecting the compatibility in GXB. The goal of this study was to systematically characterize the kinetic features of GXB in rat plasma and intestine content for revealing its in vivo high-exposure components on the basis of their metabolic fates, and to compare the kinetic differences between GXB and GXB-dePRP (GXB deducted PRP) for describing the chemical contribution of PRP to the compatibility in GXB. Firstly, the metabolic profile of GXB was systematically investigated by UPLC-Q/TOF-MS. Subsequently, quantitative methods for representative xenobiotics in rat plasma and intestine content were respectively validated and developed by UPLC-TQ-MS. Then, the established approaches were successfully applied to characterize the kinetic features of GXB through estimating pharmacokinetic parameters. These results showed that only a few kinds of xenobiotics at low exposure levels were observed in plasma, while various xenobiotics possessed high exposure in intestine content. Among them, steroidal saponins and triterpenoid saponins displayed relatively high exposure in plasma and intestine content, which are likely associated with the therapeutic effects of GXB. Moreover, there were no significant differences between metabolic profiles of GXB and GXB-dePRP, whereas the pharmacokinetic parameters, including area under the concentration–time curve (AUC) and Cmax (p < 0.05) for most xenobiotics in GXB were significantly larger than those in GXB-dePRP, implying that the introduction of PRP improved the bioavailability of constituents from TP and AMB. Altogether, this study laid a solid foundation and provided theoretical guidance for further clarification of bioactive components of GXB, as well as the synergistic effect of PRP to the compatibility in GXB. 相似文献
20.
Using the titrimetry method, the researchers hope to discover the kidney stone dissolving properties of the ethyl acetate extracts of Bryophyllum pinnatum and Aerva lanata. The ethyl acetate extract of B. pinnatum has the ability to dissolve calcium oxalate crystals and exhibited strong antiurolithiatic properties, according to the findings. Both extracts outperformed the conventional medication Neeri in terms of antiurolithiatic activity. The phytochemicals included in both plant extracts were studied using HPLC analysis. As a result, ethyl acetate extract of B. pinnatum can be used as an alternative for the treatment of kidney stones in this investigation. 相似文献