首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
采用超声辅助共沉淀法成功地将磁性Fe3O4纳米颗粒沉积在氧化石墨烯表面,利用透射电镜、磁滞回归曲线和X射线光电子能谱对材料进行了表征。将该材料作为载体固定辣根过氧化物酶,考察了固定化酶催化2-氯酚、4-氯酚和2,4-二氯酚降解反应,研究了溶液pH值、反应温度、反应时间、H2O2和氯酚浓度以及固定化酶用量对酚类物质去除率的影响。基于取代基数量和位置不同,去除率排序为2-氯酚<4-氯酚<2,4-二氯酚。另外,采用GC-MS研究了降解过程中的氧化产物。固定化酶的生化性质研究表明,固定化酶比游离酶具有更好的储存稳定性、pH稳定性和热稳定性。经过4次循环利用,固定化酶仍保留66%的活性,说明磁性纳米材料可以分离回收并重复利用,在污水处理领域具有应用前景。  相似文献   

2.
Graphene quantum dots (GQDs) were covalently immobilized onto the NiFe2O4-halloysite nanotubes (NiFe2O4-HNTs) surface to fabricate a nanocomposite material utilized as an active adsorbent to eliminate Cd(II) ions from water. NiFe2O4 nanoparticles were synthesized and simultaneously deposited on HNTs. Then, the material surface was coated by APTES (aminopropyltriethoxysilane) to cause GQDs be connected to the external layer via an amide bond. The prepared nanomaterial structure was identified by TEM, XRD, FT-IR, BET isotherm, EDS analysis and VSM (vibrating sample magnetometry). Box–Behnken design incorporated with response surface method (RSM) was utilized to find out the impact of pH, time, initial concentration of Cd(II) and adsorbent dose on cadmium removal. Study discovered that adsorption operation is the quasi-second-order kinetic model and adapted more precisely with Langmuir adsorption model. The Langmuir highest uptake capacity of 34.72 mg/g at 298 K was acquired. The Elovich model recommended that the process is a kind of chemisorption. The calculated thermodynamic variables verified that the uptake process is endothermic and spontaneous. Additionally, the adsorbent can be simply separated with the aid of a magnet. In this study, we have suggested a practical method for the synthesis of the NiFe2O4/halloysite nanotubes/graphene quantum dots magnetic nanoparticles for cadmium removal from water.  相似文献   

3.
An effective magnetic solid-phase extraction method was proposed using magnetic graphene oxide coated with poly(2-aminoterephthalic acid-co-aniline) as a sorbent for preconcentration and extraction of organophosphorus pesticides from environmental water and apple juice samples, and determined using the gas chromatography-mass spectrometry analysis. To approve the successful synthesis of the magnetic nanocomposite, the prepared sorbent was characterized by field emission scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer, and Fourier transforms infrared techniques. The main parameters affecting the extraction efficiency were considered and studied to afford an optimized procedure. Systematic method validation verified its suitable recoveries (89.4–107.3%), and precision (relative standard deviations < 6.8%). The method showed a wide linear dynamic range (0.04–700 ng/mL) with low limits of detection (0.01–0.06 ng/mL) and quantification (0.04–0.21 ng/mL). This method presented good potential and great sensitivity for the pesticides determination.  相似文献   

4.
In this work, phosphotungstic acid (H3PW12O40; PW12) was chemically anchored on aminopropylsiloxane functionalized spherical Co3O4 nanoparticles (Co3O4–SiPrNH2) and the resultant nanocomposite (Co3O4–SiPrNH2/PW12) was fully characterized. The results demonstrated successful anchoring of PW12 on the surface of Co3O4–SiPrNH2nanoparticles. The Co3O4–SiPrNH2/PW12 nanohybrid indicated a specific surface area of 42.14 m2 g?1, which was greater than that of pure PW12 (ca. 5 m2 g?1). The adsorption efficiency of this novel adsorbent nanomaterial was evaluated for removing methylene blue (MB), rhodamine B (RhB) and methyl orange (MO) dyes from aqueous solutions. The hybrid nanomaterial exhibited a high adsorption rate and selective adsorptivity for the cationic MB and RhB dyes compared to those for anionic MO dye. The prepared hybrid nanomaterial removed over 98% of MB within 12 min. The effects of initial pH, contact time, adsorbent dosage, and temperature were investigated on the adsorption process. The adsorption capacity of nanohybrid for cationic MB dye was 38.46 mg g‐1. Also, adsorption kinetics indicated that the adsorption by Co3O4–SiPrNH2/PW12 was well‐modeled using pseudo‐second‐order kinetic model. Finally, thermodynamic parameters revealed that the adsorption was endothermic and spontaneous. The adsorption rate and ability of the Co3O4–SiPrNH2/PW12 were enhanced as compared with Co3O4 and Co3O4–SiPrNH2 samples due to enhanced electrostatic attraction intraction. The nanohybride was easily separated and reused without any change in structure. Thus, it could be a promising green adsorbent for removing organic pollutants in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号