首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nigrosporins B, an anthraquinone derivative obtained from the secondary metabolites of marine fungus Nigrospora oryzae. In this study, we characterized the distinctive anti-cancer potential of Nigrosporins B in vitro and underlying molecular mechanisms in human cervical cancer Ca Ski cells for the first time. The results of MTT assay showed that Nigrosporins B significantly inhibited the proliferation of multiple tumor cells in a dose-dependent manner, especially for the Ca Ski cells with an IC50 of 1.24 µM. Nigrosporins B exerted an apoptosis induction effect on Ca Ski cells as confirmed by flow cytometry, AO/EB dual fluorescence staining, mitochondrial membrane potential analysis and western blot assay. In addition, Nigrosporins B induced obvious autophagy accompanied with the increase of autophagic vacuoles and the acceleration of autophagic flux as indicated by Cyto-ID staining, mRFP-GFP-LC3 adenovirus transfection and western blot analysis. Interestingly, the combination of Nigrosporins B with the three autophagy inhibitors all significantly enhanced the cytotoxicity of Nigrosporins B on Ca Ski cells, indicating that the autophagy induced by Nigrosporins B might protect Ca Ski cells from death. Furthermore, we found that Nigrosporins B inhibited the phosphorylation of PI3K, AKT, mTOR molecules and increased the protein expression levels of PTEN and p-AMPKα in a dose-dependent manner, suggesting that Nigrosporins B induced apoptosis and protective autophagy through the suppression of the PI3K/AKT/mTOR signaling pathway. Together, these findings revealed the anti-cervical cancer effect of Nigrosporins B and the underlying mechanism of action in Ca Ski cells, it might be as a promising alternative therapeutic agent for human cervical cancer.  相似文献   

2.
Gastric cancer (GC) is the fifth most cancer type and the third most cause of cancer-associated deaths worldwide along with the 5-year survival rate is less the 30%. This investigation was aimed to synthesis the piperine-loaded zinc oxide nanocomposite (ZnO-Pip-NC) and investigating its anticancer activity against the GC by in vitro and in vivo models by the inhibiting the apoptotic and PI3K/Akt/mTOR signaling pathways. The synthesized ZnO-Pip-NC was characterized by different techniques. The cytotoxicity of zinc oxide, piperine and the formulated ZnO-Pip-NC was tested against the AGS cells by MTT assay. The intracellular ROS level, mitochondrial membrane potential, and apoptotic cell necrosis in the AGS cells was examined by fluorescent staining techniques. The expression of apoptotic and PI3K/Akt/mTOR signaling markers were inspected by western blotting and the expression of pro0inflammatory markers analyzed by RT-PCR technique. The antioxidant levels were examined by standard methods and histopathology of gastric mucosa was analyzed. The ZnO-Pip-NC treatment appreciably inhibited the AGS cell viability. ZnO-Pip-NC treated cells also exhibited excessive intracellular ROS, diminished MMP, nuclear damages, and apoptosis induction in AGS cells. The enhanced expression of pro-apoptotic proteins and inhibition of PI3K/Akt/mTOR signaling pathway was noted in ZnO-Pip-NC treated cells. In vivo studies proved that the ZnO-Pip-NC noticeably restored the antioxidants in the GC animals and also prevented the gastric mucosa and inhibited the GC tumor formation. In conclusion, the findings of this investigation confirmed the anticancer potential of ZnO-Pip-NC against the GC via inhibiting the PI3K/Akt/mTOR signaling pathway.  相似文献   

3.
Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) tyrosine kinases, has shown promising results as a growth inhibitor of HER2-positive cancer cells in vitro. However, similar to other EGFR-targeting drugs, acquired resistance to lapatinib by HER2-positive cancer cells remains a major clinical challenge. To elucidate resistance mechanisms to EGFR/HER2-targeting agents, we performed a systematic quantitative comparison of the phosphoproteome of lapatinib-resistant (LR) human gastric cancer cells (SNU216-LR) versus parental cells (SNU216) using a titanium dioxide (TiO2) phosphopeptide enrichment method and analysis with a Q-Exactive hybrid quadrupole-Orbitrap mass spectrometer. Biological network analysis of differentially expressed phosphoproteins revealed apparent constitutive activation of the MET-axis phosphatidylinositide 3-kinase (PI3K)/α-serine/threonine-protein kinase (AKT) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways in SNU216-LR. Inhibition of the PI3K/AKT and MAPK/ERK signaling pathways in SNU216-LR also leads to cell cycle arrest, confirming the biological network analysis. Lapatinib sensitivity was restored when cells were treated with several molecular targeting agents in combination with lapatinib. Thus, by integrating phosphoproteomic data, protein networks and effects of signaling pathway modulation on cell proliferation, we found that SNU216-LR maintains constitutive activation of the PI3K/AKT and MAPK/ERK pathways in a MET-dependent manner. These findings suggest that pathway activation is a key compensatory intracellular phospho-signaling event that may govern gastric cancer cell resistance to drug treatment.  相似文献   

4.
Background: Hepatocellular carcinoma (HCC) is one of the most widespread malignancies and is reported as the fourth most prevalent cause of cancer deaths worldwide. Therefore, we aimed to investigate the probable mechanistic cytotoxic effect of the promising 2-thioxoimidazolidin-4-one derivative on liver cancer cells using in vitro and in vivo approaches. The compounds were tested for the in vitro cytotoxic activity using MTT assay, and the promising compound was tested in colony forming unit assay, flow cytometric analysis, RT-PCR, Western blotting, in vivo using SEC-carcinoma and in silico to highlight the virtual mechanism of action. Both compounds 4 and 2 performed cytotoxic effects against HepG2 cells with IC50 values of 0.017 and 0.18 μM, respectively, compared to Staurosporine and 5-Fu as reference drugs with IC50 values of 5.07 and 5.18 µM, respectively. Compound 4 treatment revealed apoptosis induction by 19.35-fold (11.42% compared to 0.59% in control), arresting the cell cycle at G2/M phase. Moreover, studying gene expression that plays critical roles in cell cycle and apoptosis by RT-PCR demonstrated that compound 4 enhances the expression of the pro-apoptotic genes p53, PUMA, and Caspase 3, 8, and 9, and impedes the anti-apoptotic Bcl-2 gene in the HepG2 cells. It can also inhibit the PI3K/AKT pathway at both gene and protein levels, which was reinforced by the in silico predictions of the molecular docking simulations towards the PI3K/AKT proteins. Finally, in vivo study verified that compound 4 has a promising anti-cancer activity through activating antioxidant levels (CAT, SOD and GSH) and ameliorating hematological, biochemical, and histopathological findings.  相似文献   

5.
Lung cancer is one of the most common cancers and has a high mortality rate. Due to its high incidence, the clinical management of the disease remains a major challenge. Several reports have documented a relationship between the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) pathway and lung cancer. The recognition of this pathway as a notable therapeutic target in lung cancer is mainly due to its central involvement in the initiation and progression of the disease. Interest in using natural and synthetic medications to target these signaling pathways has increased in recent years, with promising results in vitro, in vivo, and in clinical trials. In this review, we focus on the current understanding of PI3K/AKT/mTOR signaling in tumor development. In addition to the signaling pathway, we highlighted the therapeutic potential of recently developed PI3K/AKT/mTOR inhibitors based on preclinical and clinical trials.  相似文献   

6.
Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide staining. Iridin also increased the expression of extrinsic apoptotic pathway proteins like Fas, FasL, and cleaved Caspase-8 in AGS cells. On the contrary, iridin-treated AGS cells did not show variations in proteins related to an intrinsic apoptotic pathway such as Bax and Bcl-xL. Besides, Iridin showed inhibition of PI3K/AKT signaling pathways by downregulation of (p-PI3K, p-AKT) proteins in AGS cells. In conclusion, these data suggest that iridin has anticancer potential by inhibiting PI3K/AKT pathway. It could be a basis for further drug design in gastric cancer treatment.  相似文献   

7.
Breast cancer (BC) is one of the most common causes of death among women worldwide. Recently, interest in novel approaches for BC has increased by developing new drugs derived from natural products with reduced side effects. This study aimed to treat BC cells with harmine hydrochloride (HMH) to identify its anticancer effects and mechanisms. HMH treatment suppressed cell growth, migration, invasion, and colony formation in MCF-7 and MDA-MB-231 cells, regardless of the hormone signaling. It also reduced the phosphorylation of PI3K, AKT, and mTOR and increased FOXO3a expression. Additionally, HMH treatment increased p38 phosphorylation in MCF-7 cells and activated c-Jun N-terminal kinase (JNK) phosphorylation in MDA-MB-231 cells in a dose-dependent manner, where activated p38 and JNK increased FOXO3a expression. Activated FOXO3a increased the expression of p53, p21, and their downstream proteins, including p-cdc25, p-cdc2, and cyclin B1, to induce G2/M cell cycle arrest. Furthermore, HMH inhibited the PI3K/AKT/mTOR pathway by significantly reducing p-AKT expression in combination with LY294002, an AKT inhibitor. These results indicate that mitogen-activated protein kinases (MAPKs) and AKT/FOXO3a signaling pathways mediate the induction of cell cycle arrest following HMH treatment. Therefore, HMH could be a potential active compound for anticancer bioactivity in BC cells.  相似文献   

8.
Breast cancer is the most common cancer among women worldwide. Chemotherapy followed by endocrine therapy is the standard treatment strategy after surgery or radiotherapy. However, breast cancer is highly resistant to the treatments leading to the recurrence of breast cancer. As a result, the development of alternative medicines derived from natural plants with fewer side effects is being emphasized. Andrographolide isolated from Andrographis paniculata is one of the potential substances with anti-cancer properties in a variety of cell types, including breast cancer cells. This study aims to investigate the anti-cancer effects of andrographolide in breast cancer cells by evaluating cell viability and apoptosis as well as its underlying mechanisms through estrogen receptor (ER)-dependent and PI3K/AKT/mTOR signaling pathways. Cell viability, cell apoptosis, mRNA or miRNA, and protein expression were examined by MTT assay, Annexin V-FITC, qRT-PCR, and Western blot analysis, respectively. MCF-7 and MDA-MB-231 cell viability was reduced in a concentration- and time-dependent manner after andrographolide treatment. Moreover, andrographolide induced cell apoptosis in both MCF-7 and MDA-MB-231 cells by inhibiting Bcl-2 and enhancing Bax expression at both mRNA and protein levels. In MCF-7 cells, the ER-positive breast cancer, andrographolide showed an inhibitory effect on cell proliferation through downregulation of ERα, PI3K, and mTOR expression levels. Andrographolide also inhibited MDA-MB-231 breast cancer cell proliferation via induction of cell apoptosis. However, the inhibition of MCF-7 and MDA-MB-231 cell proliferation of andrographolide treatment did not disrupt miR-21. Our findings showed that andrographolide possesses an anti-estrogenic effect by suppressing cell proliferation in MCF-7 cells. The effects were comparable to those of the anticancer drug fulvestrant in MCF-7 cells. This study provides new insights into the anti-cancer effect of andrographolide on breast cancer and suggests andrographolide as a potential alternative from the natural plant for treating breast cancer types that are resistant to tamoxifen and fulvestrant.  相似文献   

9.
Lycium barbarum polysaccharide (LBP) in addition to modifying inorganic nanoparticles shows different biological functions such as anti-cancer, antibacterial, and anti-aging performances. However, the potential mechanism of LBP on inhibition of cancer cell proliferation, particularly gastric cancer (GC), remains unknown. The goal of this study was to show how LBP induces its anti-cancer effects through regulation of the miR-202-5p/PIK3CA axis in GC. The MTT assay was used to assess the viability of AGT and GES-1 cells. Using quantitative real-time PCR we assessed miR-202-5p expression in AGS, BCG-823, GES-1, MKN-45, and SGC-790a cells. AGS cells were transfected with miR-202-5p, an inhibitor, and a small interfering RNA (siRNA) targeting PIK3CA. To show whether miR-202-5p directly targets PIK3CA, the luciferase reporter assay was used. Also, to assess protein levels of PIK3CA/AKT/mTOR, Bax/Bcl-2, Cleaved Caspase-3, and MMP9 and GC cell migration ability, western blot and transwell assays were used, respectively. The results showed that LBP decreased GC cell viability in a dose- and time-dependent manner. Furthermore, GC cell treatment with LBP substantially decreased cell proliferation and migration, while increased GC cell apoptosis. LBP induced the upregulation of caspase-3/7 and miR-202-5p in GC cells and directly and functionally targets PIK3CA, as verified by luciferase assay and anti-miR-202-5p’s capability to reverse the inhibitory effects of LBP on PIK3CA. LBP was also shown to decrease the expression of PIK3CA downstream members such as AKT and mTOR through miR-202-5p up-regulation. Anti-cancer properties of LBP in GC cells are possibly due to the up-regulation of miR-202, which inhibits the PIK3CA/AKT/mTOR axis.  相似文献   

10.
An iridium(III) complex [Ir(ppy)2(MHPIP)]PF6 (ppy = 2-phenylpyridine, MHPIP = 2-(1-methyl-1H-pyrazol-3-yl)-1H-imidazo[4,5-f][1, 10]phenanthroline, Ir-1) was synthesized and characterized by elemental analysis, IR, 1H NMR and 13C NMR. The in vitro cytotoxic activities of the free proligand MHPIP and the complex Ir-1 against HepG2, A549, BEL-7402, SGC-7901 and normal LO2 cells were evaluated by the MTT method. MHPIP has no cytotoxic activity toward the selected cell lines, while Ir-1 shows a moderate cytotoxic effect against HepG2. This complex also displays no cytotoxicity against normal LO2 cells, with an IC50 of more than 200 µM. The apoptosis of HepG2 cells induced by the complex was studied with AO/EB and DAPI staining methods, which showed that the complex can effectively induce apoptosis. A comet assay was performed by gel electrophoresis, and the results further show that the complex can cause apoptosis. The level of reactive oxygen species, mitochondrial membrane potential, autophagy, intracellular Ca2+ levels and cell invasion were investigated by fluorescence microscopy, and the cell cycle arrest was studied by flow cytometry. The expression of caspase and Bcl-2 family proteins was investigated by western blot. The results of these experiments indicate that Ir-1 accumulates preferentially in the mitochondria of HepG2 cells and induces apoptosis through inhibition of the PI3K/AKT/mTOR pathway.  相似文献   

11.
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin’s beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.  相似文献   

12.
Triterpene saponins are throught to be potential anti-tumour agents in many cell types. This study aims to evaluate the cytotoxic activity and mechanism of a triterpene saponin, macranthoside B (MB), isolated from Lonicera macranthoides Hand.-Mazz. (Caprifoliaceae). A cell viability assay showed that MB inhibited cell growth of a panel of six cancer cell lines, especially in human acute promyelocytic leukaemia HL-60 cells, with an IC50 value of 3.8 μmol. A hypodiploid cells assay and an annexin-V-FITC/PI double staining assay showed a significant increase of apoptosis in a dose-dependent manner on HL-60 cells both 24 and 48 h after MB treatment. MB-induced apoptosis was through the caspase-mediated pathway, by activation of caspase-3. Furthermore, a lactate dehydrogenase (LDH) release test suggested that an MB-cholesterol interaction led to the rearrangement of the lipid bilayer and to subsequent cell membrane impairment. Taken together, these findings demonstrate that MB may exhibit cytotoxic activity against HL-60 cells by inducing apoptosis via caspase-dependent pathways and also membrane permeabilisation.  相似文献   

13.
Polyphyllin Ι is a steroidal saponin isolated from the rhizoma of Paris polyphylla. In the present study, we aimed to investigate the anticancer effects of polyphyllin Ι in colorectal cancer and to elucidate the potential underlying molecular mechanisms. Using, CCK8 assay, flow cytometry, laser confocal microscope analysis and western blot, the anticancer effects of the polyphyllin Ι were analysed in colorectal cells. Our results indicate that polyphyllin Ι significantly decreased cell viability of HCT 116 cells and induced autophagy. Furthermore, we found that polyphyllin Ι induced autophagy in an ROS-dependent cell death and not related with PI3 K/AKT/mTOR pathway. We also provide evidence that excessive ROS triggered by polyphyllin Ι could induce G2/M phase arrest via regulating cycle proteins expression of cell cycle regulators, such as p21 and cyclinB1. In conclusion, polyphyllin Ι exhibit anticancer effect through ROS-dependent autophagy and induces G2/M arrest in colorectal cancer.  相似文献   

14.
Human kinases are one of the most promising targets for cancer therapy. Methods able to measure the effects of drugs on these cell agents remain crucial for biologists and medicinal chemists. The current work therefore sought to develop an in-capillary enzymatic assay based on capillary electrophoresis (CE) to evaluate the inhibition of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), and the mammalian target of rapamycin (mTOR). These kinases belong to the same signaling pathway PI3K/Akt/mTOR. For this proposal, the capillary was used as a nanoreactor in which a few nanoliters of the kinase, its substrate, adenosine triphosphate (ATP), and the potent inhibitor were separately injected. A transverse diffusion of laminar flow profiles (TDLFP) approach was employed to mix the reactants. Adenosine diphosphate (ADP ) was detected online at 254 nm. The CE assay was first developed on the α isoform of PI3K. It was compared to five commercial kits frequently used to assess kinase inhibition, based on time-resolved fluorescence resonance energy transfer (TR-FRET) and bioluminescence. Each assay was evaluated in terms of sensitivity (S/B), reproducibility (Z′), and variability (r 2). This CE method was easily extended to assay the inhibition of the β, γ, and δ isoforms of PI3K, and of the other kinases of the pathway, Akt1 and mTOR, since it is based on in-capillary mixing by TDLFP and on ADP quantification by simple UV absorption. This work shows for the first time the evaluation of inhibitors of the kinases of the PI3K/Akt/mTOR pathway using a common in-capillary CE assay. Several inhibitors with a wide range of affinity toward these enzymes were tested.  相似文献   

15.
16.
Anti-aging is a challenging and necessary research topic. Momordica charantia L. is a common edible medicinal plant that has various pharmacological activities and is often employed in daily health care. However, its anti-aging effect on mice and the underlying mechanism thereof remain unclear. Our current study mainly focused on the effect of Momordica charantia L. on d-galactose-induced subacute aging in mice and explored the underlying mechanism. UHPLC-Q-Exactive Orbitrap MS was applied to qualitatively analyze the chemical components of Momordica charantia L. ethanol extract (MCE). A subacute aging mice model induced by d-galactose (d-gal) was established to investigate the anti-aging effect and potential mechanism of MCE. The learning and memory ability of aging mice was evaluated using behavioral tests. The biochemical parameters, including antioxidant enzyme activity and the accumulation of lipid peroxides in serum, were measured to explore the effect of MCE on the redox imbalance caused by aging. Pathological changes in the hippocampus were observed using hematoxylin and eosin (H&E) staining, and the levels of aging-related proteins in the PI3K/AKT signaling pathway were assessed using Western blotting. The experimental results demonstrated that a total of 14 triterpenoids were simultaneously identified in MCE. The behavioral assessments results showed that MCE can improve the learning and memory ability of subacute mice. The biochemical parameters determination results showed that MCE can improve the activity of antioxidant enzymes and decrease the accumulation of lipid peroxides in aging mice significantly. Furthermore, aging and injury in the hippocampus were ameliorated. Mechanistically, the results showed a significant upregulation in the protein expression of P-PI3K/PI3K and P-AKT/AKT (p < 0.01), as well as a significant reduction in cleaved caspase-3/caspase-3, Bax and P-mTOR/mTOR (p < 0.01). Our results confirm that MCE could restore the antioxidant status and improve cognitive impairment in aging mice, inhibit d-gal-induced apoptosis by regulating the PI3K/AKT signaling pathway, and rescue the impaired autophagy caused by mTOR overexpression, thereby exerting an anti-aging effect.  相似文献   

17.
Tin oxide nanoparticles (SnO2 NPs) demonstrate potential anti-cancer functions. However, the anti-cancer mechanisms of SnO2 NPs have not been explored in detail. In the present study, we synthesized SnO2 NPs through laser ablation technique and examined their anticancer mechanisms and the probable involvement of the PI3K/AKT mediated pathways in human breast cancer cells (MCF-7) in vitro. The synthesized SnO2 NPs were characterized by transmission electron microcopy (TEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR) techniques. Afterwards, the breast cancer cells were incubated with increasing concentrations of SnO2 NPs, and inhibition of cell proliferation was assessed by the viability assay. Furthermore, the quantification of reactive oxygen species (ROS) and apoptosis were examined by flow cytometry followed by superoxide dismutase (SOD) and catalase (CAT) activity as well as mitochondrial membrane potential assays. The expression levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), mechanistic target of rapamycin (mTOR), B-cell lymphoma 2 (Bcl-2), and Bax were also assessed by western blot and quantitative real time PCR (qRT-PCR). It was shown that SnO2 NPs, 30 nm, with potential colloidal stability selectively prevented the proliferation of MCF-7 in comparison with MCF-10A cells and triggered ROS production, apoptosis, deactivation of SOD and CAT activity, and mitigation of mitochondrial membrane potential. Moreover, SnO2 NPs stimulated mitochondrial-mediated apoptosis pathway by overexpression of Bax/Bcl-2 and downregulation of p-PI3K/p-AKT/p-mTOR signaling pathway. This data elucidates the possible mechanisms by which SnO2 NPs may stimulate their anticancer effects.  相似文献   

18.
A small library of wortmannin based probes was synthesized by installing a clickable handle at C11 site for bioconjugation, and secondary amine and biotin moiety at C20 site to achieve self-activation and cancer target, respectively, to facilitate the analysis of their intracellular effects.  相似文献   

19.
Breast cancer is the leading cause of cancer death among women in the world, and its morbidity and mortality are increasing year by year. Epirubicin (EPI) is a commonly used drug for the treatment of breast cancer but unfortunately can cause cardiac toxicity in patients because of dose accumulation. Therefore, there is an urgent need for new therapies to enhance the sensitivity of breast cancer cells to EPI. In this study, we found ursolic acid (UA) can significantly improve the drug sensitivity of human breast cancer MCF-7/MDA-MB-231 cells to EPI. Next, we observed that the co-treatment of UA and EPI can up-regulate the expression of autophagy-related proteins Beclin-1, LC3-II/LC3-I, Atg5, and Atg7, and decrease the expression levels of PI3K and AKT, which indicates that the potential mechanism should be carried out by the regulating class III PI3K(VPS34)/Beclin-1 pathway and PI3K/AKT/mTOR pathway. Furthermore, we found the autophagy inhibitor 3-methyladenine (3-MA) could significantly reverse the inhibitory effect of co-treatment of UA and EPI on MCF-7 and MDA-MB-231 cells. These findings indicate that UA can dramatically enhance the sensitivity of MCF-7 and MDA-MB-231 cells to EPI by modulating the autophagy pathway. Our study may provide a new therapeutic strategy for combination therapy.  相似文献   

20.
Rutin has been well recognized for possessing numerous pharmacological and biological activities in several human cancer cells. This research has addressed the inhibitory potential of rutin against the Jab1 oncogene in SiHa cancer cells, which is known to inactivate various tumor suppressor proteins including p53 and p27. Further, the inhibitory efficacy of rutin via Jab1 expression modulation in cervical cancer has not been yet elucidated. Hence, we hypothesized that rutin could exhibit strong inhibitory efficacy against Jab1 and, thereby, induce significant growth arrest in SiHa cancer cells in a dose-dependent manner. In our study, the cytotoxic efficacy of rutin on the proliferation of a cervical cancer cell line (SiHa) was exhibited using MTT and LDH assays. The correlation between rutin and Jab1 mRNA expression was assessed by RT-PCR analysis and the associated events (a mechanism) with this downregulation were then explored via performing ROS assay, DAPI analysis, and expression analysis of apoptosis-associated signaling molecules such as Bax, Bcl-2, and Caspase-3 and -9 using qRT-PCR analysis. Results exhibit that rutin produces anticancer effects via inducing modulation in the expression of oncogenes as well as tumor suppressor genes. Further apoptosis induction, caspase activation, and ROS generation in rutin-treated SiHa cancer cells explain the cascade of events associated with Jab1 downregulation in SiHa cancer cells. Additionally, apoptosis induction was further confirmed by the FITC-Annexin V/PI double staining method. Altogether, our research supports the feasibility of developing rutin as one of the potent drug candidates in cervical cancer management via targeting one such crucial oncogene associated with cervical cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号