首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Arabian Journal of Chemistry》2020,13(12):8783-8792
The objective of this study was to assess the effects of stress on physiology/biochemical component of S. polyrhiza and its impact on CuNPs synthesis and bioethanol production. NaCl with RV5 provokes oxidative stress in S. polyrhiza and significantly increase MAD, Proline, H2O2, ROS, SOD and APX activity compare to control condition. Starch accumulation in S. polyrhiza was found 354% higher and correspond 4.4 times higher ethanol yield under stress condition compare to control. CuNPs were synthesized with an average size of 23–26 nm by purified fraction of APX having 37 KDa MW, 1.44 IU specific activity. Synthesized CuNPs were stable up to 15 consecutive cycles and potency against wide range of reactive dyes. The maximum remedial efficiency of synthesized CuNPs for COD and BOD was 55263.3 ± 3298.5 mg/m3min. and 30560.3 ± 1987.5 mg/m3min. respectively for RV5 wastewater. 0.072 mg/g of bioethanol was produced from the wet pulp remaining after nanoparticles synthesis. High efficiency of CuNPs and significant production of Ethanol, indicate that the feasibility for circular model for continuous industrial wastewater treatment.  相似文献   

2.
Chilean Laureliopsis philippiana has been used in traditional medicine by the Mapuche and their ancestors. To evaluate its pharmacological activity, Laureliopsis philippiana leaf essential oil extract (LP_EO) was chemically and biologically characterized in the present study. In vitro antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and tumor cell culture lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the essential oil was analyzed using gas chromatography–mass spectrometry. The oil contains six major monoterpenes: eucalyptol (27.7 %), linalool (27.6 %), isozaphrol (19.5 %), isohomogenol (12.6 %), α-terpineol (7.7 %), and eudesmol (4.8 %). Based on quantum mechanical calculations, isosafrole and isohomogenol conferred in vitro antioxidant and antimicrobial activity to LP_EO. In addition, LP_EO showed antimicrobial activity against clinical Helicobacter pylori isolates (MIC 64 and MBC > 128 μg·mL?1), Staphylococcus aureus (MIC 32 and MBC > 64 μg·mL?1), Escherichia coli (MIC 8 and MBC 16 μg·mL?1) and Candida albicans (MIC 64 and > 128 μg·mL?1). LP_EO could selectively inhibit the proliferation of epithelial tumor cell lines but showed low toxicity against Caenorhabditis elegans (0.39 to 1.56 μg·mL?1). Therefore, LP_EO may be used as a source of bioactive compounds in novel pharmacological treatments for veterinary and human application, cosmetics, or sanitation.  相似文献   

3.
A modified QuEChERS method (Quick, Easy, Cheap, Effective, Rugged, and Safe) for the determination of fifteen phenolic compounds in mustard greens (Brassica juncea) using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) analysis was developed. The QuEChERS partitioning step and dispersive solid phase extraction (d-SPE) clean-up sorbents were investigated, aimed at phenolic compound extraction and pigment removal, respectively. QuEChERS acetate version combined with 25 mg of diatomaceous earth (DE) and 5.0 mg of graphitized carbon black (GCB) provided the best conditions for sample preparation of the target compounds. Under the optimized conditions, all phenolic compounds showed good linearity (r ≥ 0.99) over the concentration range of 0.1 to 8000 μg kg−1, and the quantification limits were in the range of 0.06–230 μg kg−1. The spectrophotometric analysis showed that the clean-up step promoted a significant removal of chlorophyll, which is the major pigment present in the sample. Furthermore, antioxidant activity analysis was also carried out after the clean-up step and, together with chromatographic data, showed that no significant retention of the phenolic compounds occurs in the clean-up step. Two mustard greens varieties – Southern Giant Curled (SGC) and Florida Broadleaf (FB) - were analyzed with the proposed method. Seven phenolic compounds (4-hydroxybenzoic, p-coumaric, ferulic and sinapic acids, naringenin, apigenin and kaempferol) were found in both varieties, the greatest abundance being for sinapic acid (1261.5 ± 23 μg kg−1 in SGC and 1235.5 ± 26 μg kg−1 in FB) and ferulic acid (2861 ± 24 μg kg−1 in SGC and 3204.5 ± 45 μg kg−1 in FB).  相似文献   

4.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

5.
This study investigates the recovery of oily sludge using ultrasound-assisted rhamnolipids and uses oil recovery yield as an evaluation index. The Box–Behnken response surface method was employed to investigate the individual and interactive effects of four different operating factors: frequency, dosage, liquid–solid ratio, and stirring speed. The model optimization results showed that the order of degree of influence of these four factors is frequency > liquid–solid ratio > dosage > stirring speed. The mathematical model predicted the highest oil recovery yield as 92.27%, which was highly accurate (in the 95% confidence interval) as from the experimental results, the highest oil recovery yield was 89.95% under optimal reaction conditions (frequency = 25.58 kHz, dosage = 150.45 mg/L, liquid–solid ratio = 4.1:1 mL/g, and stirring speed = 407 rpm). Thus, the deviation from the prediction model was only 2.32%, indicating that this method provides a theoretical basis for the treatment of oily sludge and can be implemented for practical application in Huaidong in the Xinjiang Province.  相似文献   

6.
Lepidium sativum is cultivated mainly for the edible oil from its seeds, and considered as an unutilized and neglected crop despite its important properties. Its oil fraction is used to produce soap and stabilize linseed oil when it is mixed with wild mustard seed oil. Once converted into fatty acid methyl esters, it represents a good substitute for imported petroleum diesel after alkaline transesterification reaction. In the current study, Lepidium sativum seeds cultivated in Tunisia and the physicochemical properties and nutrient profile of its cold pressed seed oil were investigated. The antioxidant, antibacterial, and anti-inflammatory activities of the above oil were also assessed. Lepidium sativum seed oil was abundant in both linolenic (35.59 ± 1.9%) and oleic (21.14 ± 0.63%) acids, and high amounts of β-sitosterol (42.57 ± 2.96 mg/100 g), campesterol (20.04 ± 1.4 mg/100 g) and Δ 5,24 stigmastadienol (11.82 ± 0.45 mg/100 g) were detected. The total tocopherol content of Lepidium sativum seed oil reached 136.83 ± 7.6 mg/100 g with a predominance of γ-tocopherol (86.23%). Its seed oil exhibited an IC50 of 10.33 ± 0.05 mg/mL and a radical scavenging activity of 415.6 ± 40 Trolox Equivalent Antioxidant Capacity (TEAC) for the DPPH and the ABTS assays, respectively. While the thermal analysis proved a high thermal stability of Lepidium sativum seed oil, that of eight bacteria and one fungal strain showed no noticeable bacterial or antifungal effects. It was also revealed that Lepidium sativum seed oil held a remarkable anti-inflammatory activity. Hence, the obtained results evidenced remarkable chemical, antioxidant and anti-inflammatory properties of Lepidium sativum seed oil, which might potentially be promising for enhancing human health and preventing age-related diseases.  相似文献   

7.
Recently, nitrate pollution has attracted more public attention. In order to truly remove nitrate and reduce total nitrate content (TN) in water body, more harmless N2 should be converted from nitrate. Studies on catalytic removal of nitrate in wastewater have been carried out. However, the catalytic performance still needs to be significantly improved, especially the N2 selectivity. According to these, strategies that enable to efficiently improve N2 selectivity of catalytic denitrification were explored in this paper. Results implied that the catalyst with composite carrier that possesses porous structure, large surface area, excellent electronic properties, and stable physical–chemical property tends to have better catalytic performance. It is suggested that acid washing by 2 mol/L HCl for certain carriers be applied to enhancement of N2 selectivity. Additionally, higher N2 conversion was also achieved by addition of sodium bis-2-ethylhexyl sulphosuccinate (AOT) onto Pd with the formation of PdAOT-Cu catalyst, which may be ascribed to the AOT that partially shields Pd active sites and inhibits hydrogen spillover from Pd to Cu. Response Surface Methodology (RSM) was utilized for experimental design and prediction of the optimal parameters. More N2 was obtained under the predicted optimal conditions: 5.0 pH, 135 min time, 3.1 Pd: Cu, and 3.1 g/L Fe(0).  相似文献   

8.
The study is concerned with synthesizing copper oxide nanoparticles with leaf extract Eucalyptus Globoulus. The results of scanning electron microscopy (SEM) and dynamic light scattering (DLS) revealed that the green synthesized copper oxide nanoparticles are spherical and have a mean particle size of 88 nm, with a negative zeta potential of ?16.9 mV. The XRD graph showed the crystalline and monoclinic phases of CuO nanoparticles. The average crystalline size around 85.80 nm was observed by the Debye–Scherrer formula. The adsorption characteristics of the nano-adsorbents were investigated using methyl orange, and the adsorption efficiency at room temperature attained 95 mg/g. Copper oxide nanoparticles (CuO NPs) adsorb methyl orange dye most effectively at pH 4.5 when the dye is applied in quantities of 0.04 g/50 mL. Box–Behnken design (BBD) in response surface methodology (RSM) was used to optimize various process parameters, such as pH solution (X1: 2 – 11), adsorbing dose (X2: 0.01 – 0.08 g/L), [MO] dye concentration (X3: 10 – 80 mg/L). Overall, the adjusted coefficient of determination (R2) value of 0.99 demonstrated that the used model was quite appropriate, and the chosen RSM was effective in optimization the decolorization conditions of MO.  相似文献   

9.
《Arabian Journal of Chemistry》2020,13(10):7289-7301
Black pepper oils have been investigated frequently in the recent years. However, there is a significant variation in physicochemical properties and bioactivity of oils depended on extraction techniques. In this study, the systemic investigation of four various extraction methods was performed to evaluate the physicochemical characterizations, antioxidant and antibacterial activity. The investigation of 1H NMR, FTIR and UV–Vis spectra confirmed presence of non-volatile components in oils extracted through supercritical CO2 and hexane-soaking extractions which induced their typical thermal properties. The isothermal behaviour of extracted oils related to evaporation was within range of 3.2–7.3% (w/w) at 27 °C. The SEM images of the black pepper confirmed different operation manners of mechanism between extractions using the solvents and heating process. The lowest MIC for both essential oils from conventional hidrodistillation and microwave-assisted hidrodistillation against two bacteria including E. coli and B. subtilis were found to be 137 µg mL−1. The non-isothermal decomposition kinetics were investigated on the essential oil of microwave-assisted hydrodistillation extraction. The activation energies and pre-exponent factors of non-isothermal decomposition were found to be in range of 36.5–73.7 KJ mol−1 and 4.98 × 103–1.97 × 108 s−1, respectively, dependent on conversional fractions of the oil. The results revealed that chemical components, physicochemical properties and bioactivity of black pepper essential oils depended on the extraction techniques.  相似文献   

10.
Halogenated inhibitors showed robust, reversible, and selective monoamine oxidase-B (MAO-B) inhibitory efficacy in candidates that were derived from them. Our team has previously synthesized and assessed a panel of halogenated chalcones and coumarin for the study on MAO-B inhibition. The aim of this study was to build GA-MLR based QSAR models and predictive 3D Pharmacophore models, as well as to investigate the relationship between halogenated derivatives and MAO-B inhibitory activity. The robust statistical significance in the parameter (R2 = 0.78 and Q2 = 0.69) was demonstrated. Best Hypo1 contains one hydrophobic and two aromatic rings. The lead molecule for quantum mechanics was performed, and it was revealed that it would bind to proteins and provide stability. To determine the stability of the ligand-enzyme complex, a thorough molecular dynamics analysis of the lead compounds was accomplished.  相似文献   

11.
《Arabian Journal of Chemistry》2020,13(10):7445-7452
Human alpha (α1)-acid glycoprotein (AGP) is an acute phase protein whose plasma concentration increases several-folds in the presence of various diseases. The variability in AGP plasma concentration is expected to have a huge impact on the drug binding equilibrium. Therefore, a precise measurement of AGP-drug binding is of great demand for drug development. In the current study, an ionic liquid-based aqueous two-phase system combined with affinity capillary electrophoresis (ILATPS/ACE) was utilised in order to improve the accuracy of AGP-drug binding analysis through the measurements of electrophoretic mobilities. The utilisation of ILATPS has shown to have a positive impact on the stability of AGP activity solution during the storage for an extended period of time. In addition, the effect of various alkyl chains (C2-C10) of imidazolium-based ILs with concentrations ranging between 10.00 and 1000.0 μmol L−1 on the AGP binding with the anti-cancer drugs chlorambucil (CHL) and dacarbazine (DAC) was examined by the system developed (ILATPS/ACE). A 100.00 μmol L−1 1-ethyl-3-methylimidazolium chloride (EMImCl) prepared in the physiological buffer conditions containing AGP (5.00–100.00 µmol L−1) has provided an accurate apparent binding constant of 1.99 ± 0.11 and 6.95 ± 0.14 L mmol−1 with CHL and DAC respectively. Apart from the ACE analysis, EMImCl/phosphate buffer solution was found to be a distinguished system that could lengthen the stability of AGP activity for a period of time reaching 90 days during the solution storage at 4.00 °C. This effect is thought to be due to the easy conversion of one-phase EMImCl/phosphate buffer/AGP at the ambient lab temperature into the two-phase solution at refrigerator temperature, 4.00 °C, and vice versa. Therefore, the ILATP/ACE system could be used to enhance the accuracy for other AGP-drug bindings with a fast, easy to use, and cost-effective analysis.  相似文献   

12.
Protein hydrolysates have the potential to be natural and safer sources of bioactive peptides. In this study, two proteases were used to hydrolyze Chinese sturgeon (Acipenser sinensis) protein, and the hydrolysates were then purified to yield antioxidant peptides. The degree of hydrolysis of 23.56 % and 18.14 % was obtained using papain and alcalase 2.4L, respectivly, and hydrolysates had 96.80 % and 87.24 % total amino acid content, respectivly. The papain hydrolysate (PH) and alcalase 2.4L hydrolysate (AH) showed good antioxidant activity against DPPH? (IC50 of 3.64 and 3.15 mg/mL) and ABTS?+ (IC50 of 1.92 and 1.58 mg/mL), respectively. The low-molecular-weight (<1000 Da) fraction of both hydrolysates demonstrated the highest antiradical activity (IC50 of 2.59 and 2.31 mg/mL, DPPH) and (IC50 of 1.54 and 1.36 mg/mL, ABTS), respectively. Nine peptides were separated from both hydrolysates using reverse phase high performance liquid chromatography (RP-HPLC). The IC50 for ABTS?+ scavenging activity of peptide P5 with valine, glycine and asparagine (MW of 282.13 Da) from PH, and peptide P3 with histidine, glycine and alanine (MW of 302.74 Da) from AH was 0.89 and 0.72 mg/mL, respectively. The fractions and purified peptides obtained from Chinese sturgeon hydrolysates could be utilized as natural antioxidant substitutes in pharmaceuticals and food products.  相似文献   

13.
Emerging pharmaceutical ingredients (APIs) like sulfamethoxazole (SMX), metronidazole (MNZ) and ciprofloxacin (CIP) are biopersistent and toxic to the environment and public health. In this study, UV/TiO2 photodegradation was applied in the degradation of SMX, MNZ and CIP individually and in a mixture. For a 5 mg/L SMX solution, about 97% of SMX was degraded within 360 min, which was reduced to 80% for 80 mg/L of SMX solution at the same TiO2 dosage and photodegradation time. The maximum removals of MNZ and CIP as individual components were 100% and 89%, respectively at 600 min of photodegradation reaction time. For binary mixtures, the highest removal (100%) was achieved for MNZ and CIP ([MNZ] = [CIP] = 40 mg/L) mixture at 120 min whereas the degradations were 97% and 96% for SMX and MNZ, and SMX and CIP binary mixtures, respectively, even after 600 min of experimental time at the same concentrations. For tertiary mixture, the maximum degradation 99% was observed for (SMX = CIP] = 20 mg/L and [MNZ] = [40 mg/L) at 600 min. The observed reaction rate was 0.01085 min?1 when SMX concentration was 5 mg/L, which decreased to 0.00501 min?1 for SMX concentration of 80 mg/L, indicating decreasing of reaction rate at higher concentration. The results indicate that the UV/TiO2 process is promising to apply for the treatment of pharmaceutical wastewaters.  相似文献   

14.
Heavy metals (HMs), pollution of major environmental matrices and its attendant effects on human health and the environment, continue to generate huge scientific interest, particularly in monitoring and detection. Herein, the optical property of carboxymethyl cellulose stabilized silver nanoparticles (CMC-AgNPs), supported with ascorbic acid, is exploited as a colorimetric probe for the detection of toxic Au3+ ion in solution. The as-synthesized CMC-AgNPs showed sharp absorption maximum at 403 nm, with sparkling yellow color and average particles size distribution less than 10 nm. It was further characterized using ATR-FTIR, TEM, FESEM/EDS, XRD and DLS/zeta potential analyzer. Au3+ ion detection strategy involves the addition of ascorbic acid (AA) to a pH adjusted CMC-AgNPs, followed by the analyte addition. AA would facilitate the reduction of Au3+ on CMC-AgNPs (seed), with resultant color perturbations from light yellow to yellow, orange, ruby red and purple red, under 8 min incubation, at room temperature (RT). The CMC-AgNPs could also serve as a catalyst, by promoting AA mediated reduction of Au3+, in-situ. Moreover, we propose, that the color and the absorption spectra change is attributed to the deposition of gold nanoparticles (AuNPs), on the CMC-AgNPs/AA probe, to form (CMC-Ag@Au) nanostructures, depending on the analyte concentration. Absorbance ratio (A540/A403) showed good linearity with Au3+ concentration from 0.25 to 100.0 µM, and an estimated LOD of 0.061 µM. The assay was applied to Au3+ detection in environmental wastewater sample, showing satisfactory real sample detection potentiality.  相似文献   

15.
The impregnation of magnetite (Mt) nanoparticle (NPs) onto Musa acuminata peel (MApe), to form a novel magnetic combo (MApe-Mt) for the adsorption of anionic bromophenol blue (BPB) was studied. The SEM, EDX, BET, XRD, FTIR and TGA were used to characterize the adsorbents. The FTIR showed that the OH and CO groups were the major sites for BPB uptake onto the adsorbent materials. The average Mt crystalline size on MApe-Mt was 21.13 nm. SEM analysis revealed that Mt NPs were agglomerated on the surface of the MApe biosorbent, with an average Mt diameter of 25.97 nm. After Mt impregnation, a decrease in BET surface area (14.89 to 3.80 m2/g) and an increase in pore diameter (2.25–3.11 nm), pore volume (0.0052–0.01418 cm3/g) and pH point of zero charge (6.4–7.2) was obtained. The presence of Pb(II) ions in solution significantly decreased the uptake of BPB onto both MApe (66.1–43.8%) and MApe-Mt (80.3–59.1%), compared to other competing ions (Zn(II), Cd(II), Ni(II)) in the solution. Isotherm modeling showed that the Freundlich model best fitted the adsorption data (R2 > 0.994 and SSE < 0.0013). In addition, maximum monolayer uptake was enhanced from 6.04 to 8.12 mg/g after Mt impregnation. Kinetics were well described by the pseudo-first order and liquid film diffusion models. Thermodynamics revealed a physical, endothermic adsorption of BPB onto the adsorbents, with ΔHo values of 15.87–16.49 kJ/mol, corroborated by high desorption (over 90%) of BPB from the loaded materials. The viability of the prepared adsorbents was also revealed in its reusability for BPB uptake.  相似文献   

16.
Electrochemical disinfection has gained increasing interest in many sectors of social and industrial life. The reason is the growing need to disinfect the air, water, and special surfaces of different nature such as drinking water, wastewater, pool water, and other water qualities or surfaces. New research studies are reported and discussed. A stronger orientation on engineering aspects is intended. Following tendencies can be identified - research on complex liquid systems, implementation of risks consideration seen from by-product formation, and better cooperation between researchers and industry oriented to improve cell design and disinfection technology. Partially, reaction kinetics is studied and discussed at higher levels of likelihood. Furthermore, it can be found that more and more research papers deal with hybrid technologies to create novelty, to use synergistic effects and to meet the demands of real system treatment under practical conditions. A major focus can be identified for wastewater treatment/disinfection emphasizing electrocoagulation and electro-photocatalysis.  相似文献   

17.
Generally, the treated wastewater must at least achieve the minimum safety standards for the purpose of the treatment process. The main target of this work is the combination of the features of surfactants, nanoparticles, and silica gel in one system for Cu(II) removal from the aqueous solution. To achieve this goal, the attempt would be made by the fabrication of nanocomposite based on 4-amino-N-tetradecyl pyridinium bromide (C14) coated silver nanoparticles and silica gel. The fabricated nanocomposite (C14-Ag-SG) was characterized using different techniques such as FTIR, XRD, XRF, SEM, and TEM. We examined the adsorption of Cu(II) ions onto the fabricated nanocomposite using batch adsorption. The effect of the contact time, pH of the solution, and mass of the adsorbent on the efficiency of adsorption was evaluated. The adsorption capacity of Cu(II) increased by increasing of the contact time with a neutral pH. The maximum removal of Cu(II) ions (98.57 %) was found using 0.4 g of the (C14-Ag-SG) nanocomposite. The fabricated nanocomposite showed high adsorption efficiency which clarifies the effect of the surfactant compound (C14) and silver nanoparticles in improving the adsorption efficiency. The results in this work suggest that the fabricated nanocomposite has high efficiency in the removal of Cu(II).  相似文献   

18.
The aim of the present study was to magnetize Plantago ovata Forssk. hydrogel and produce a nanosphere system to carrier mefenamic acid as the drug model. For this propose, P. ovata seeds hydrogel (POSH) was extracted and magnetized by Fe3O4 being functionalized using tetraethyl orthosilicate and trimethoxyvinysilane. Thereafter, mefenamic acid (MFA) was loaded on the carrier system. The final product, as the magnetic drug loaded nanosphere (Fe/POSH/MFA), was fully characterized through different techniques involving X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating-sample magnetometer (VSM), thermal gravimetric analysis (TGA), dynamic light scattering (DLS), and FT-IR spectroscopy. The results confirmed the successful production of the drug loaded nanosphere system with particles magnetization of 25 emu/g over a range size of 40–50 nm. However, the size distribution less than 100 nm was measured through DLS analysis. The hydrogel showed a pH sensitivity swelling behavior representing the best efficacy at pH 7.4. The efficiency of the drug encapsulation was found to be 64.35%. The drug releasing was studied using a dialysis bag at pH = 7.4. The highest in vitro drug releasing was found to be 57.3 ± 0.6% after 72 h, as well. The findings of the current report account for the potential use of P. ovata hydrogel as an effective delivery system for encapsulation of water insoluble basic drugs, e.g., MFA in a magnetized carrier system.  相似文献   

19.
There is a growing attention to the bio and renewable energies due to fast depletion of fossil fuels as well as the global warming problem. Here, we developed a modeling and simulation method by means of artificial intelligence (AI) for prediction of the bioenergy production from vegetable bean oil. AI methods are well known for prediction of complex and nonlinear process. Three distinct Adaptive Boosted models including Huber regression, LASSO, and Support Vector Regression (SVR) as well as artificial neural network (ANN) were applied in this study to predict actual yield of Fatty acid methyl esters (FAME) production. All boosted utilizing the Adaptive boosting algorithm. The important influencing parameters on the biodiesel production such as the catalyst loading (CAO/Ag, wt%) and methanol to oil (Soybean oil) molar ratio were selected as the input variables of models while the yield of FAME production was selected as output. Model hyper-parameters were tuned to maintain generality while improving prediction accuracy. The models were evaluated using three distinct metrics Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R2. Error rates of 8.16780E-01, 4.43895E-01, 2.06692E + 00, and 3.92713 E-01 were obtained with the MAE metric for boosted Huber, SVR, LASSO and ANN models. On the other hand, the RMSE error of these models were about 1.092E-02, 1.015E-02, 2.669E-02, and 1.01174E-02, respectively. Finally, the R-square score were calculated for boosted Huber, boosted SVR, and boosted LASSO as 0.976, 0.990, 0.872, and 0.99702, respectively. Therefore, it can be concluded that although the boosted SVR and ANN models were better models for prediction of process efficiency in terms of error, but all algorithms had high accuracy. The optimum yield of 83.77% and 81.60% for biodiesel production were observed at optimum operating values from boosted SVR and ANN models, respectively.  相似文献   

20.
The misuses of veterinary drugs can result in the accumulation of residues in food of animal origin that can make its way to the final consumer. Herein we describe a simple method for the accurate determination of beta-lactams, quinolones, sulphonamides, and tetracyclines in fish, poultry, and red meat. No extraction cartridges were used; instead, the extraction process consisted of the addition of an organic solvents, shaking, centrifugation, and dilution. An extensive validation process demonstrated an excellent linearity (R2 ≥ 0.99) for 23-drug residues. The recovery of drugs in different matrices at two concentration levels (n = 6) was in the range of 82–119%. The method was proved to be repeatable and reproducible with intra/inter-day measurements (RSDs lower than 20%). The quantification limits of drug residues were in the range of 0.8 to 45.3 ug/kg, which is well below the maximum residue limits set by most regulatory authorities. This method was successfully applied to the routine analysis of 20 fish, poultry, and red meat samples (n = 60).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号