首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this Minireview, the state of the art in the use of ionic liquids (ILs) and deep eutectic solvents (DESs) as alternative reaction media for biocatalytic processes and biomass conversion is presented. Initial, proof‐of‐concept studies, more than a decade ago, involved first‐generation ILs based on dialkylimidazolium cations and non‐coordinating anions, such as tetrafluoroborate and hexafluorophosphate. More recently, emphasis has switched to more environmentally acceptable second‐generation ILs comprising cations, which are designed to be compatible with enzymes and, in many cases are derived from readily available, renewable resources, such as cholinium salts. Protic ionic liquids (PILs), prepared simply by mixing inexpensive amines and acids, are particularly attractive from both an environmental and economic viewpoint. DESs, prepared by mixing inexpensive salts with, preferably renewable, hydrogen‐bond donors such as glycerol and amino acids, have also proved suitable reaction media for biocatalytic conversions. A broad range of enzymes can be used in ILs, PILs and DESs, for example lipases in biodiesel production. These neoteric solvents are of particular interest, however, as reaction media for biocatalytic conversions of substrates that have limited solubility in common organic solvents, such as carbohydrates, nucleosides, steroids and polysaccharides. This has culminated in the recent focus of attention on their use as (co)solvents in the pretreatment and saccharification of lignocellulose as the initial steps in the conversion of second‐generation renewable biomass into biofuels and chemicals. They can similarly be used as reaction media in subsequent conversions of hexoses and pentoses into platform chemicals.  相似文献   

2.
The alarming levels of carbon dioxide (CO2) are an environmental problem that affects the economic growth of the world. CO2 emissions represent penalties and restrictions due to the high carbon footprint. Therefore, sustainable strategies are required to reduce the negative impact that occurs. Among the potential systems for CO2 capture are microalgae. These are defined as photosynthetic microorganisms that use CO2 and sunlight to obtain oxygen (O2) and generate value-added products such as biofuels, among others. Despite the advantages that microalgae may present, there are still technical–economic challenges that limit industrial-scale commercialization and the use of biomass in the production of added-value compounds. Therefore, this study reviews the current state of research on CO2 capture with microalgae, for which bibliometric analysis was used to establish the trends of the subject in terms of scientometric parameters. Technological advances in the use of microalgal biomass were also identified. Additionally, it was possible to establish the different cooperation networks between countries, which showed interactions in the search to reduce CO2 concentrations through microalgae.  相似文献   

3.
Microalgae may be a potential feedstock for biogas production through anaerobic digestion. However, this process is limited by the hydrolytic stage, due to the complex and resistant microalgae cell wall components. This fact hinders biomass conversion into biogas, demanding the application of pretreatment techniques for inducing cell damage and/or lysis and organic matter solubilisation. In this study, sonication, thermal, ultrasound, homogeneizer, hydrothermal and steam explosion pretreatments were evaluated in different conditions for comparing their effects on anaerobic digestion performance in batch reactors. The results showed that the highest biomass solubilisation values were reached for steam explosion (65–73%) and ultrasound (33–57%). In fact, only applied energies higher than 220 W or temperatures higher than 80 °C induced cell wall lysis in C. sorokiniana. Nonetheless, the highest methane yields were not correlated to biogas production. Thermal hydrolysis and steam explosion showed lower methane yields in respect to non-pretreated biomass, suggesting the presence of toxic compounds that inhibited the biological process. Accordingly, these pretreatment techniques led to a negative energy balance. The best pretreatment method among the ones evaluated was thermal pretreatment, with four times more energy produced that demanded.  相似文献   

4.
微藻生物能源具有巨大的开发潜力及应用前景,但仍面临很多产业化瓶颈.本文分析了微藻生物能源技术的潜力与存在的问题,指出制约微藻生物能源技术发展的主要障碍为规模养殖,如何提高微藻生长效率、降低能耗、提高规模生产的可靠性仍是面临的艰巨任务.本文介绍了石油化工企业温室气体减排与微藻生物能源技术的集成及技术思路,构建了减排工业废气与生产微藻生物能源的循环经济模式.此外,还介绍了中国石化在利用温室气体发展微藻生物能源技术方面的实践,围绕能源微藻选育技术、光生物反应器技术、微藻生物质加工及综合利用技术展开阐述.  相似文献   

5.
Our over dependency on the fossil resource for industrial chemicals and fuels faces great challenges.Recently, the production of monophenols from lignin in lignocellulosic biomass is regarded as a promising process for sustainable biofuels. This article discusses the conversion of lignin in actual biomass directly to monophenols. The two step way including extraction of lignin from biomass and further degradation of the lignin oligomers to monophenols is especially discussed. The obtained monophenols can also be converted to chemicals with low-oxygen content via hydrodeoxygenation process. For extraction of lignin,co-solvent system is the most adopted for hydrolysis or solvolysis of lignin assisted by acid or alkaline catalysts. The structure of the obtained oligomers derived from lignin is discussed in detail. For lignin depolymerization, hydrogenolysis is an efficient method with the use of gaseous hydrogen or alcohols as hydrogen source. At the meantime, depolymerization mechanism and the route for repolymerization of the reaction intermediates are presented here. In hydrodeoxygenation process, metal catalysts, especially noble metal catalysts are required. The precise effects of the reaction solvents and catalysts on extraction and degradation of lignin need to be further investigated, and this will benefit to design more efficient strategies for lignin utilization.  相似文献   

6.
Hemicellulose extracted from wood prior to processing the wood into paper or composite materials can be a resource for the production of biofuels or bioproducts. Mixed microbial cultures are capable of converting biomass into mixed carboxylic acids, which can be purified as products or converted to biofuels or other biochemicals. Mixed cultures are robust conversion systems and do not require added enzymes to hydrolyze biomass to sugars. We produced mixed carboxylic acids using mesophilic and thermophilic fermentation of raw, unconditioned green liquor and hot water hardwood extracts, as well as baseline sugar solutions. Daily samples were taken from the fermentations and analyzed for composition, pH, and gas volume. The extract digestions were capable of hydrolyzing oligomeric hemicellulose without supplemental enzymes and converting all types of released sugars. Lactic acid was prominent in lower pH systems and acetic acid, the main product at more neutral pH. Compared to thermophilic systems, mesophilic fermentations had higher hydrolysis conversion, carbohydrate conversion, acid yields, and selectivity for C3–C7 acids. Carbon balances on the wood extracts closed to within ±9%. Methane production in all cases was essentially zero.  相似文献   

7.
With the world’s focus on rapidly deploying second generation biofuels technologies, there exists today a good deal of interest in how yields, economics, and environmental impacts of the various conversion processes of lignocellulosic biomass to transportation fuels compare. Although there is a good deal of information regarding these conversion processes, this information is typically very difficult to use on a comparison basis because different underlying assumptions, such as feedstock costs, plant size, co-product credits or assumed state of technology, have been utilized. In this study, a rigorous comparison of different biomass to transportation fuels conversion processes was performed with standard underlying economic and environmental assumptions so that exact comparisons can be made. This study looked at promising second-generation conversion processes utilizing biochemical and thermochemical gasification technologies on both a current and an achievable state of technology in 2012. The fundamental finding of this study is that although the biochemical and thermochemical processes to ethanol analyzed have their individual strengths and weaknesses, the two processes have very comparable yields, economics, and environmental impacts. Hence, this study concludes that based on this analysis there is not a distinct economic or environmental impact difference between biochemical and thermochemical gasification processes for second generation ethanol production.  相似文献   

8.
Microalgae are known as a rich source of bioactive compounds which exhibit different biological activities. Increased demand for sustainable biomass for production of important bioactive components with various potential especially therapeutic applications has resulted in noticeable interest in algae. Utilisation of microalgae in multiple scopes has been growing in various industries ranging from harnessing renewable energy to exploitation of high-value products. The focuses of this review are on production and the use of value-added components obtained from microalgae with current and potential application in the pharmaceutical, nutraceutical, cosmeceutical, energy and agri-food industries, as well as for bioremediation. Moreover, this work discusses the advantage, potential new beneficial strains, applications, limitations, research gaps and future prospect of microalgae in industry.  相似文献   

9.
High reliance on crude oil for energy consumption results in the urgent need to explore and develop alternative renewable sources. One of the most promising routes is the transformation of biomass into biofuels and chemicals. The introduction of deep eutectic solvents in 2004 received a considerable amount of attention across different research fields, particularly in biomass processing. The effectiveness of deep eutectic solvents in breaking down the recalcitrant structure in biomass highlights its impact on the transformation of biomass into various value-added products. In addition, deep eutectic solvents are widely regarded as promising “green” solvents due to their low cost, low toxicity, and biodegradable properties. In this paper, some background information on lignocellulosic biomass and deep eutectic solvents is given. Furthermore, the roles of deep eutectic solvents in biomass processing are discussed, focusing on the impacts of deep eutectic solvents on the selectivity of chemical processes and dissolution of biomass. This review also highlights the advantages and limitations of deep eutectic solvents associated with their usage in biomass valorization.  相似文献   

10.
Ye Wang 《催化学报》2021,42(12):2091-2093
正Producing biofuels from renewable biomass resources is considered to be an effective way to reduce carbon emissions and is helpful for establishing sustainable society [1]. Bio‐methane (CH4) is a promising and available clean energy in the future owing to its properties such as high calorific values, low carbon emissions and full miscibility and interchangeability with natural gas or shale gas. Therefore, the production of me‐thane directly from waste biomass resources like straw is highly attractive. However, because of the robustness and vari‐ety of C–C bonds and C–O bonds existing in biomass molecules,it is very difficult to achieve high‐selective methanation of bio‐  相似文献   

11.
Lubricants are materials able to reduce friction and/or wear of any type of moving surfaces facilitating smooth operations, maintaining reliable machine functions, and reducing risks of failures while contributing to energy savings. At present, most worldwide used lubricants are derived from crude oil. However, production, usage and disposal of these lubricants have significant impact on environment and health. Hence, there is a growing pressure to reduce demand of this sort of lubricants, which has fostered development and use of green lubricants, as vegetable oil-based lubricants (biolubricants). Despite the ecological benefits of producing/using biolubricants, availability of the required raw materials and agricultural land to create a reliable chain supply is still far from being established. Recently, biomass from some microalgae species has attracted attention due to their capacity to produce high-value lipids/oils for potential lubricants production. Thus, this multidisciplinary work reviews the main chemical-physical characteristics of lubricants and the main attempts and progress on microalgae biomass production for developing oils with pertinent lubricating properties. In addition, potential microalgae strains and chemical modifications to their oils to produce lubricants for different industrial applications are identified. Finally, a guide for microalgae oil selection based on its chemical composition for specific lubricant applications is provided.  相似文献   

12.
In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative to fossil fuels. Gasification is the thermochemical conversion of an organic material into a valuable gaseous product, called syngas, and a solid product, called char. The biomass gasification represents an efficient process for the production of power and heat and the production of hydrogen and second-generation biofuels.This paper deals with the state of the art biomass gasification technologies, evaluating advantages and disadvantages, the potential use of the syngas and the application of the biomass gasification. Syngas cleaning though fundamental to evaluate any gasification technology is not included in this paper since; in the authors' opinion, a dedicated review is necessary.  相似文献   

13.
With the growing interest in more environmentally friendly solvents and processes, the introduction of Natural Deep Eutectic Solvents (NaDES) as low cost, non-toxic and biodegradable solvents represent a new opportunity for green and sustainable chemistry. Thanks to their remarkable advantages, NaDES are now arousing growing interest in many fields of research such as food, health, cosmetics and biofuels. Around the world, NaDES are seen as a promising alternative to commonly used petrochemical solvents. The objective of this review is to draw up a panorama of the existing skills on NaDES in French laboratories and industries for the valuation of natural products. This review therefore focuses on current applications, skills and perspectives, in order to analyze the place of French research in the use of NaDES for the valorization of biomass since 2015.  相似文献   

14.

The dependence of oil and its consequent commercial fluctuation make researchers to seek viable alternatives for their gradual replacement. The present work aims to evaluate the production of biofuels from the slow pyrolysis of the Syzygium malaccense biomass (Malay Apple) through thermogravimetric analysis (TGA-DTG), Fraser-Suzuki deconvolution and chemometric tools of multivariate analysis. Three chemical treatments (sodium hydroxide, sulfuric acid and phosphoric acid) were evaluated, as well as the variation in the heating rate and the consequent effects on the pyrolysis of biomass for the production of biofuels, totaling 16 pyrolysis routes (including the use of biomass no treatment). In the obtained data, multivariate analysis tools were used, looking for groups that presented favorable characteristics for the production of quality biofuels. Heatmap, k-means and SOM analysis indicated the routes that use phosphoric acid treatment and heating rates of 10 or 15 °C/min (Jap10 and Jap15, respectively) as relevant, because they have low lignin contents and high gaseous cellulose and hemicellulose contents.

  相似文献   

15.
Domestic wastewaters are produced in huge volumes and abundant with carbon, nitrogen and phosphorous, which are a promising source of nutrients for production of microalgae. Microalgae-based bioremediation of domestic wastewater offers various advantages over traditional treatment approaches because the process consumes CO2, completely removes nitrogen and phosphorous for production of green biomass and oxygen. Moreover, the abundance of biochemical compositions (e.g., lipids, proteins, carbohydrates, bioactive compounds) of microalgae biomass is superior to terrestrial plant biomass in refining to multi-products having variety of commercial values. In this review, the most dominant microalgae used for simultaneous removal of pollutants and production of biomass and metabolites from domestic wastewater are presented. Biorefinery of microalgae biomass produced from domestic wastewater for production of multiple products is also explored. Finally, challenges and perspectives of successful microalgae-based bioremediation of domestic wastewater toward the biorefinery are briefly discussed.  相似文献   

16.
The annual photosynthesis on the Earth exceeds the anthropogenic CO2 production. This suggests an energetic use of biomass and has greatly promoted the development of biofuels. In many cases, however, the use of biofuels is breaking the rules of sustainability. To meet the world's energy demand from biomass would require the total available agricultural land. This insight has a critical plate or tank discussion triggered. Energetically and environmentally more efficient than the use of biofuels would be the cultivation of fast‐growing timber and its direct use in coal power plants for electricity production. By far the most efficient use of solar energy is provided by photovoltaic and solar heat use. Because of their high energy density liquid second‐generation biofuels will be applied also in future in such cases where electrical mobility has its limits.  相似文献   

17.
Aquatic microalgae have high potential for production of bio-chemicals, liquid transport fuels and charcoal. Their main advantage over existing energy crops is that they have faster growth rates and do not compete with food production. In this study six species of microalgae (Tetraselmis chui, Chlorella like, Chlorella vulgaris, Chaetocerous muelleri, Dunaliella tertiolecta and Synechococcus) were selected, presenting a broad cross-section of physical characteristics and known behaviour under cultivation. The objective of this work was to ascertain differences in thermal conversion behaviour between the microalgae species under slow pyrolysis conditions.The samples were first analysed with a Computer Aided Thermal Analysis (CATA) technique at a standard heating rate of 10 °C/min. For all species, the energy required to achieve thermal conversion was found to be approximately 1 MJ/kg. Gas chromatography was then applied to measure the evolution of biogas compounds with temperature. The heat of combustion of the biogas compounds was estimated to vary significantly between species, ranging from 1.2 to 4.8 MJ/kg.Pyrolysis oil product yields were also estimated at 500 °C. The oils produced at this temperature were collected and their molecular weight distribution assessed by Matrix Assisted Laser Desorption/Ionisation (MALDI). The species were found to produce up to 43% by volume of bio-oils. In all samples the char fraction remained above one third of total sample weight.  相似文献   

18.
It is crucial to develop economical and energy-efficient processes for the sustainable transformation of biomass into fuels and chemicals. In this context, supercritical water biomass valorization (SCBV) processes are an alternative way to produce biogas, biofuels, and valuable chemicals. Supercritical water technology has seen much progress over the last fifteen years and an industrial application has merged: the supercritical water oxidation of wastes. The evolution from lab-scale to pilot-scale facilities has provided data on reaction mechanisms, kinetics, modeling, and reactor technology as well as an important know-how, which can now be exploited to use the reactivity in supercritical water to transform biomass into gases (CO, H2, CO2, CH4, and N2) or into liquids (liquid fuel and valuable chemicals) with the supercritical water biomass gasification and liquefaction processes, respectively. This Review highlights the potential of SCBV processes to transform biomass into gas and liquid energy sources and highlights the developments that are still necessary to push this technology onto the market.  相似文献   

19.
Bioenergy obtained from lignocellulosic biomass is considered the most efficient way to achieve sustainable development in the future. However, there still are challenges in the cellulose conversion to hexoses, which could be used as raw material for the bioenergy production. Sub- and supercritical water hydrolysis have been researched as emergent technologies to obtain simple sugars from lignocellulosic biomass; however, the reaction pathways and kinetics of the hydrolysis of cellulose into oligomers and monomers, and their degradation under sub- and supercritical conditions, are not completely understood yet. Thus, this review provides an overview of the state-of-the-art on hydrolysis with sub- and supercritical water of model systems, cellulose and starch, in the context of elucidating the reaction pathways and kinetic behavior of the biomass hydrolysis to produce suitable fermentation substrates for the production of second generation bioethanol and other biofuels.  相似文献   

20.
Quantification of total lipids is a necessity for any study of lipid production by microalgae, especially given the current interest in microalgal carbon capture and biofuels. In this study, we employed a simple yet sensitive method to indirectly measure the lipids in microalgae by measuring the fatty acids (FA) after saponification. The fatty acids were reacted with triethanolamine–copper salts (TEA–Cu) and the ternary TEA–Cu–FA complex was detected at 260 nm using a UV–visible spectrometer without any colour developer. The results showed that this method could be used to analyse low levels of lipids in the range of nano-moles from as little as 1 mL of microalgal culture. Furthermore, the structure of the TEA–Cu–FA complex and related reaction process are proposed to better understand this assay. There is no special instrument required and the method is very reproducible. To the best of our knowledge, this is the first report of the use of UV absorbance of copper salts with FA as a method to estimate lipids in algal cultures. It will pave the way for a more convenient assay of lipids in microalgae and can readily be expanded for estimating lipids in other biological systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号