首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Anode electrodes play a key role in generating electricity from microbial fuel cells (MFCs) because they directly affect microbial activities. This communication reports the preparation of nitrogen-doped carbon nanotubes with a bamboo-like nanostructure (Bamboo-NCNTs) by catalytic pyrolysis of ethylene diamine and application of the Bamboo-NCNTs as anode-modifying materials in MFCs. The Bamboo-NCNTs significantly improved performance of an MFC in current production and power output, and reduced internal resistance of the anode compared with conventional CNTs-modified and unmodified anodes. The improved performance could be attributed to the increased active sites induced by multiple joint structures and enhanced biocompatibility originated from nitrogen dopant.  相似文献   

2.
The potential of carbon nanotubes (CNTs) as a novel sorbent for extraction of dicamba, a highly polar acidic herbicide, from aqueous samples was evaluated. The sorption capacity of CNTs increases remarkably with decreasing sample pH. The solution of ACN and ammonia (80:20 v/v) was found to be the most effective as the eluent for desorption from a 0.2 g CNT cartridge. The method was tested for river water samples with the LOD of 2 microg/L (for 100 mL sample) and compared with C18 bonded silica.  相似文献   

3.
Nickel oxide/carbon nanotubes (NiO/CNTs) composite materials for supercapacitor are prepared by chemically depositing nickel hydroxide onto carbon nanotubes pretreated by ultrasonication and followed by thermal annealing at 300 °C. A series of NiO/CNTs composites with different weight ratios of nickel oxide versus carbon nanotubes are synthesized via the same route. The high-resolution TEM and SEM results show that a lot of nicks, which favored the nucleation of the nickel hydroxide formed on the outer walls of carbon nanotubes due to ultrasonic cavitations, and then nickel oxide coated uniformly on the outer surface of the individual carbon nanotubes. The NiO/CNTs electrode presents a maximum specific capacitance of 523 F/g as well as a good cycle life during 1,000 cycles in 6 M KOH electrolyte. The good electrochemical characteristics of NiO/CNTs composite can be attributed to the three-dimensionally interconnected nanotubular structure with a thin film of electroactive materials.  相似文献   

4.
The carbon nanotubes (CNTs) assisted strategy has been proposed for insulin sensing and insulin proteolysis analysis. Experiments demonstrated that this strategy could be used for trace insulin determination with a low detection limit 7.75 ng mL−1 (S/N = 3) and a detection range from 20 ng mL−1 to 400 ng mL−1. Both biocompatibility and intrinsic conductivity of pristine CNTs enabled them to act an excellent biosensing platform for the realization of direct electrochemistry and electrocatalysis of insulin. Compared with the present methods, the proposed strategy could realize the trace insulin detection without electrode modifications. It is more convenient and simpler than those based on the chemically modified electrodes. This method also made the CNTs as the indicator for insulin proteolysis analysis so that the biological process could be studied by electron microscope, electrochemical methods and digital camera. CNTs obtained after the proteolysis showed the same capabilities as the pristine ones in electrochemical signal enhancement and could participate in the bio-circle repeatedly.  相似文献   

5.
Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-l-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH2 under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell.  相似文献   

6.
An ultrasensitive chemiluminescent (CL) immunoassay system was developed for the detection of tumor marker. This sandwich CL assay method was for the first time designed based on a highly efficient streptavidin-functionalized multi-walled carbon nanotubes (MWCNTs) platform. The glass slide was firstly silylanized with 3-gycidoxypropyltrimethoxysilane (GPTMS) to generate surface epoxy group functionality. Subsequently, the MWCNTs/chitosan solution was mixed with streptavidin solution, and a certain amount of the resulting suspension was dropped on the surface of the epoxy-activated glass substrate to form a firm streptavidin-functionalized MWCNTs platform. The biofunctionalized-MWCNTs platform shows large reactive surface area and excellent biocompatibility. The capture antibody can be efficiently immobilized on the biosensing platform surface based on the highly selective recognition of streptavidin to biotinylated antibody. Using α-fetoprotein (AFP) as model analyte, the proposed method exhibits wide linear range of 0.001–0.1 ng mL−1 with a low detection limit down to 0.52 pg mL−1. The CL immunoassay system displays 7.9-fold increase in the detection sensitivity compared to the immunosensor without using MWCNTs. Moreover, the resulting immunosensor demonstrates excellent specificity, good reproducibility, and acceptable stability. This streptavidin-functionalized MWCNTs platform opens a novel and promising avenue for fabricating ultrasensitive CL immunoassay system.  相似文献   

7.
Electrocatalytic properties (towards reduction of bromate in 0.5 mol dm−3 H2SO4) of multi-walled carbon nanotubes (CNTs) modified with phosphododecamolybdate (PMo12) monolayers have been diagnosed using cyclic voltammetry and amperometry. The ability of negatively charged PMo12-modified CNTs to attract electrostatically ultra-thin, positively charged conducting polymer (PEDOT or polypyrrole) structures is explored to grow in controlled manner hybrid organic-inorganic network electrocatalytic films. Due to the presence of three-dimensionally distributed CNTs, the films’ conductivity and porosity are improved. The hybrid systems utilizing polypyrrole, rather than PEDOT, have produced fairly higher bromate electroreduction catalytic currents. Comparison is also made to Nafion-stabilized dispersion of PMo12-modified CNTs inks. The latter system is characterized by good stability and relatively the highest sensitivities with respect to bromate concentration.  相似文献   

8.
9.
Guo Z  Ren J  Wang J  Wang E 《Talanta》2011,85(5):2517-2521
Ochratoxin A, a toxin produced by Aspergillus ochraceus and Penicillium verrucosum, is one of the most abundant food-contaminating mycotoxins in the world. It has been classified by the International Agency for Research on Cancer (IARC) as a possible human carcinogen. In this paper, a sensitive and selective fluorescent aptasensor for ochratoxin A (OTA) detection was constructed, utilizing single-walled carbon nanotubes (SWNTs) as quencher which can quench the fluorescence of free unfolded toxin-specific aptamer attached with FAM (carboxyfluorescein). Without any coating materials as compared to graphene-oxide based sensor, we obtained the detection limit of our sensing platform based on SWNTs to be 24.1 nM with a linear detection range from 25 nM to 200 nM. This technique responded specifically to OTA without interference from other analogues (N-acetyl-l-phenylalanine, warfarin and OTB). It has also been verified for real sample application by testing 1% beer containing buffer solution spiked with a series of concentration of OTA.  相似文献   

10.
The layer-by-layer assembly of polyethyleneimine and carbon nanotubes is carried out through the electrostatic interactions on colloidal polystyrene templates. The successful spherical growth of polyethyleneimine/carbon nanotube multilayers could be investigated by SEM. The subsequent in situ preparation and deposition of gold nanoparticles on the core–shell composites could yield novel microsphere complexes, which are characterized by SEM, TEM, EDX and XRD. The functional hierarchical microspheres with gold nanoparticles exhibit good catalytic activity in the reaction of reducing 4-nitrophenol to 4-aminophenol.  相似文献   

11.
The formation of covalently linked composites of multi–walled carbon nanotubes (MWCNT) and glucose oxidase (GOD) with high-function density for use as a biosensing interface is described. The reaction intermediates and the final product were characterized by using FT–IR spectroscopy, and the MWCNT-coated GOD nanocomposites were examined by atomic force microscopy (AFM) and transmission electron microscopy (TEM). Interestingly, it was found that the GOD–MWCNT composites are highly water soluble. Electrochemical characterization of the GOD–MWCNT composites that were modified on a glassy carbon electrode shows that the covalently linked GOD retains its bioactivity and can specifically catalyze the oxidation of glucose. The oxidation current shows a linear dependence on the glucose concentration in the solution in the range of 0.5–40 mM with a detection limit of 30 μM and a detection sensitivity of 11.3 μA/mMcm2. The present method may provide a way to synthesize MWCNT related composites with other biomolecules and for the construction of enzymatic reaction-based biofuel cells and biosensors. Supported by grants from the National Natural Science Foundation of China (NSFC, No. 20125515; 90206037; 20375016) and the Natural Science Foundation of Jiangsu Province (Grant No. BK 2004210)  相似文献   

12.
碳纳米管封装铁纳米粒子催化剂上CO加氢制低碳烯烃   总被引:3,自引:0,他引:3  
由于石油资源的逐步枯竭,近年来费托(F-T)反应因其可以高效将煤、天然气和生物质等转化成液体燃料和高值化学品而越来越受到人们的关注。相比于Co, Ni和Ru等F-T催化剂, Fe基催化剂因其价格低廉,产物分布广而被广泛研究。以合成气直接制备低碳烯烃的F-T过程为例,铁基催化剂通常会因积碳和烧结的问题,而导致失活。因此,人们通常使用一些氧化物载体,比如氧化硅,氧化铝或者分子筛来分散并稳定铁粒子。但是这类氧化物载体通常与铁有非常强的相互作用,特别是在铁粒子较小的情况下,容易生成一些难于还原的硅酸铁和铝酸铁。而活性炭、碳纤维等惰性载体与铁的相互作用较弱,不足以稳定小的铁粒子在而反应过程中聚集。近来,我们组提出了利用石墨烯碳层封装过渡金属粒子作为催化剂,利用“穿透”的金属电子来催化反应,从而可以使活性中心和反应介质隔离,有效地增强了非贵金属催化剂的活性和稳定性。在此基础上,我们组和其他课题组的研究表明,一系列石墨烯碳层封装的非贵金属催化剂在燃料电池阴极氧还原反应,电催化析氢反应,染料敏化太阳能电池中的I3–还原反应以及催化氧化还原反应中都有着广泛的应用前景。这种材料中碳层不仅能在氧化气氛、酸性介质中保护包覆的金属,防止其被氧化或者腐蚀,还与包覆的金属有着较强的相互作用,可以促进非贵金属的电子向碳层表面的转移,有望在一些苛刻的反应条件下实现对贵金属催化剂的替代。本文进一步拓展了其在高温反应中的应用,发现豆荚状碳纳米管封装的金属铁纳米粒子在合成气制备低碳烯烃中可以有效防止金属铁纳米粒子的烧结和聚集,因此表现出优异的低碳烯烃选择性和催化稳定性。我们利用一步化学反应法合成了豆荚状碳纳米管封装的铁纳米粒子催化剂(Pod-Fe),并通过酸洗除去碳管外面裸露的铁粒子。透射电镜(TEM)和X射线衍射(XRD)表明酸洗后铁粒子被包覆在碳管内,并且呈金属态,而酸洗前,则还有大量的氧化铁粒子分布于碳管外部(FeOx/Pod-Fe)。将酸洗前后的两个催化剂用于固定床气相F-T反应中。通过调节空速和温度考察了它们的催化反应性能,结果表明两个催化剂在不同的反应条件下都有着良好的低碳烯烃选择性。不同反应温度下,它们表现出不同的变化趋势:Pod-Fe活性随着温度的升高而缓慢增长,至380 oC都没有明显的失活现象;而对于FeOx/Pod-Fe催化剂,随着温度的升高, CO的转化率先升高,在300 oC时达最高,但随着温度进一步升高,活性迅速降低,呈现一个火山型曲线。 TEM结果发现,反应后FeOx/Pod-Fe催化剂粒子上产生了很多杂乱的碳丝,并且铁粒子有着明显的聚集长大。而Pod–Fe催化剂即使在380 oC反应后,其形貌仍然保持完好,没有积碳产生,粒子也没有发生聚集和长大。进一步在320 oC下120 h的寿命试验发现, Pod-Fe催化剂的初始活性较低,但经20 h的活化阶段,活性会先增加后略有下降,20 h后趋于稳定。而FeOx/Pod-Fe催化剂在反应初始虽然表现出较高的活性,但是随着时间进行,活性迅速下降一半以上,最后趋于稳定。同时结合反应后TEM和XRD的结果发现碳管外部裸露的铁粒子会在反应过程中形成碳化铁物种,并随着反应进行产生聚集,并伴有大量积碳,导致活性迅速下降;而碳层的包覆对于铁粒子有着很好的稳定作用,使得铁粒子能够在高温反应中保持稳定,并且没有积碳的产生。由此可见石墨烯碳层可以有效保护其包覆的金属粒子,并且能够提高其在高温反应下的低碳烯烃选择性和稳定性。此类催化剂有望在一些苛刻条件下的多相催化反应中得到广泛应用。  相似文献   

13.
An innovative process for a mass production of multi-wall carbon nanotubes (MWCNTs) by means of pyrolysis of virgin or recycled polyolefins is described. The technique uses solid-gas fluidised bed reactors, continuously operated under conditions which allow high heating rates of the polymers, high heat and material exchange coefficients and a reliable control of residence times in the reactor. The obtained MWCNTs have been characterized by TGA, SEM and TEM microscopy as well as X-ray diffractometry and Raman spectroscopy. The results demonstrate that the proposed process allows the production of MWCNTs compatible with most of the already known applications, in large quantities and at low cost. This makes extremely wider the field of possible applications of these nanostructured materials.  相似文献   

14.
Electrochemistry of water-soluble cobalt(II) tetrasulfophthalocyanine (CoTSPc) electrodeposited on glassy carbon nanotube pre-modified with acid-functionalized multi-walled carbon nanotubes (MWCNT) is described. Both charge transfer resistances toward [Fe(CN)6]3−/4− redox probe and electrocatalytic responses toward epinephrine (EP) detection follow the trend: bare GCE < GCE-MWCNT < GCE-CoTSPc < GCE-MWCNT-CoTSPc. EP analysis was then carried out in details using GCE-MWCNT-CoTSPc. The catalytic rate constant value k ch = 2.2 × 107 (mol cm−3)−1 s−1 was obtained from rotating disk electrode experiment. Interestingly, GCE-MWCNT-CoTSPc efficiently suppressed the detection of ascorbic acid (the natural interference of neurotransmitters in physiological conditions) showing good sensitivity (0.132 ± 0.003 A l mol−1), limit of detection (4.517 × 10−7 mol l−1), and quantification (15.056 × 10−7 mol l−1). In addition, GCE-MWCNT-CoTSPc was conveniently used to determine EP in epinephrine hydrochloric acid injection with recovery of 101.1 ± 2.2%.  相似文献   

15.
An electrochemical method was developed to deposit platinum (Pt)–nickel (Ni) alloy nanocomposites on polyaniline-multiwalled carbon nanotubes (Pt–Ni/PAN/MWCNTs). The material was characterized by various methods including field emission scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, and electrochemical techniques. An appreciably improved catalysis toward oxidation of carbon monoxide (CO) was observed at the Pt–Ni/PAN/MWCNTs nanocomposites (real ratio of Pt–Ni of 17:1), which was interpreted by a mechanism based on the bifunctional catalysis. The successful preparation of Pt–Ni/PAN/MWCNTs nanocomposites opens a new path to synthesize the promising catalysts for CO.  相似文献   

16.
Oxidized single‐walled carbon nanotubes (o‐SWNTs) were employed as the drug carriers to deliver the small molecules of Rhodamine123 (Rho123) into the K562 cells via physical adsorption. However, due to the fluorescence quenching of Rho123 on carbon nanotubes, the quantitative determination of Rho123 in cells is difficult. Based on the MEKC coupled with LIF detection, a quantitative approach was developed for the determination of Rho123 delivered into K562 cells by o‐SWNTs. Where the adsorbed Rho123 on o‐SWNTs could be desorbed by SDS in running buffer and be simultaneously separated with o‐SWNTs due to the differences of their electrophoretic mobility by applying the electric potential at the both ends of capillary. Using this approach, the intracellular uptakes of Rho123 in multidrug‐resistant and multidrug‐sensitive leukemia cells were quantified, and the results showed that o‐SWNTs could be used as the potential drug carriers to deliver small molecules into cells via the physical adsorption along with the circumventing of multidrug resistance of leukemia cells.  相似文献   

17.
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.  相似文献   

18.
A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).  相似文献   

19.
Pt alloys with transition metals supported on carbon substrates are used as improved cathode electrocatalysts for fuel cells. Enhanced catalytic activity is attributed to the structure (Pt-Pt bond distance) and/or electronic effect (Pt d-electron vacancy). This work focuses on the development of Pt3Co/f-MWCNT catalysts (functionalized multiwalled carbon nanotubes [f-MWCNT]) using ethylene glycol as the dispersing and reducing agent. The aim is to in parallel achieve fine dispersion, quantitative deposition and alloy formation. As described herein, the pH value of the reaction suspension has a critical effect on the composition and morphology of the synthesized nanoparticles. High pH values favor the formation of Pt3Co alloy, nevertheless negatively influencing the dispersion. A discussion is made on the reduction/deposition mechanism and how to control the conditions to result in optimum properties.  相似文献   

20.
Guillermina L. Luque 《Talanta》2007,71(3):1282-1287
This work reports on the analytical performance of composites obtained by dispersing copper microparticles and multi-wall carbon nanotubes within a mineral oil binder (CNTPE-Cu) for the determination of amino acids and albumin. The strong complexing activity of amino acids towards copper makes possible an important improvement in the sensitivity for the determination of amino acids and albumin. This new electrode permits the highly sensitive amperometric detection of amino acids, even the non-electroactive ones, at very low potentials (0.000 V) and physiological pH (phosphate buffer solution pH 7.40). The response of the electrode is highly dependent on the amount of copper, demonstrating the crucial role of the metal in the analytical performance of the sensor. The best analytical performance is obtained for the electrode containing 6.0% (w/w) copper. The resulting sensor shows a fast response (7 s) and a sensitivity that depends on the nature of the amino acid. The electrode surface demonstrates an excellent resistance to surface fouling, with R.S.D. of 4% for the sensitivities of 10 successive calibration plots. Albumin is determined with CNTPE-Cu using a protocol based on the accumulation of the protein for 10 min at −0.100 V, followed by the square-wave voltammetric analysis. The quantification of albumin concentration in lyophilized control serum gives excellent agreement with the classical spectrophotometric methodology and with the value informed for the supplier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号