首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inspired by the wide application of amides in plant pathogens, a series of novel 1-substituted-5-trifluoromethyl?1H?pyrazole-4-carboxamide derivatives were designed and synthesized. Bioassay results indicated that some target compounds exhibited excellent and broad-spectrum in vitro and certain in vivo antifungal activities. Among them, the in vitro EC50 values of Y13 against G. zeae, B. dothidea, F. prolifeatum and F. oxysporum were 13.1, 14.4, 13.3 and 21.4 mg/L, respectively. The in vivo protective activity of Y13 against G. zeae at 100 mg/L was 50.65%. SAR analysis revealed that the phenyl on the 1-position of the pyrazole ring was important for this activity. An antifungal mechanism study of Y13 against G. zeae demonstrated that this compound may disrupt the cell membrane of mycelium, thus inhibiting the growth of fungi. These mechanistic study results were inconsistent with those for traditional amides and may provide a novel view for deep study of this series of pyrazole carboxamide derivatives.  相似文献   

2.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

3.
The purpose of this study was to illustrate the mechanism of “enzyme inactivation and toxicity reduction” of Fructus Tribuli (FT) after being heating processed. Ultra-high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) was used to quantitatively analyze the contents of four steroidal saponins in crude Fructus Tribuli (CFT) and stir-fried Fructus Tribuli (SFT) under different storage times at room temperature. The enzyme activity of β-D-glucosidase in CFT and SFT were determined and calculated by ultraviolet–visible spectrometry (UV-VIS spectrometry). In addition, the enzyme hydrolysates of FOT and tribuluside A were qualitatively analyzed by ultra-high-performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). The hepatorenal toxicity of spirostanol saponins in FT were further confirmed by in vivo and in vitro experiment. This study confirmed that “enzyme inactivation and toxicity reduction” was one of the reasons why the stir-frying can reduce hepatorenal toxicity of FT, and further enriched the exploration on the mechanism of processing toxicity reduction.  相似文献   

4.
Graphitic carbon nitride (g-C3N4) is a remarkable semiconductor catalyst that has attracted widespread attention as a visible light photo-responsive, metal-free, low-cost photocatalytic material. Pristine g-C3N4 suffers fast recombination of photogenerated electron-hole pairs, low surface area, and insufficient visible light absorption, resulting in low photocatalytic efficiency. This review presents the recent progress, perspectives, and persistent challenges in the development of g-C3N4-based photocatalytic materials. Several approaches employed to improve the visible light absorption of the materials including metal and non-metal doping, co-doping, and heterojunction engineering have been extensively discussed. These approaches, in general, were found to decrease the material’s bandgap, increase the surface area, reduce charge carrier recombination, and promote visible light absorption, thereby enhancing the overall photocatalytic performance. The material has been widely used for different applications such as photocatalytic hydrogen production, water splitting, CO2 conversion, and water purification. The work has also identified various limitations and weaknesses associated with the material that hinders its maximum utilization under visible illumination and presented state-of-the-art solutions that have been reported recently. The summary presented in this review would add an invaluable contribution to photocatalysis research and facilitate the development of efficient visible light-responsive semiconducting materials.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

6.
Ethnopharmacological relevanceMetabolic syndrome is closely related to the intestinal microbiota and disturbances in the host metabolome. Hyperuricemia (HUA), a manifestation of metabolic syndrome, can induce various cardiovascular diseases and gout, seriously affecting a patient’s quality of life. Astragalus membranaceus has a long history as a commonly used traditional Chinese medicine to treat kidney disease in China and East Asia.Materials and methodsWe compared the therapeutic effect of benzbromarone and two different doses Astragalus membranaceus ultrafine powder (AMUP) in rats with HUA. Ultra-performance liquid chromatography-mass spectrometer was used to analyze the AMUP metabolism in the plasma, urine, and feces. Further, 16S ribosome RNA sequencing and feces metabolomic were performed to capture the variation of the gut microbiota and metabolites changes before and after drug administration.ResultsAMUP had a notable impact on reducing blood uric acid levels while protecting the liver and kidney. Drug metabolism analysis demonstrated that effective constituent flavonoids are distributed in the blood, whereas saponins remain in the intestine. Gut microbiota analysis showed that low-dose AMUP ameliorated HUA-induced gut dysbiosis by reducing the abundance of harmful bacteria and increasing that of some beneficial bacteria with anti-inflammatory properties, such as Clostridia, Lachnospiraceae, and Muribaculaceae. In addition, HUA-induced changes in metabolite contents in bile acid and adrenal hormone biosynthesis pathways were restored after treatment with AMUP.ConclusionLow-dose AMUP exerts remarkable therapeutic effects on HUA by regulating the gut microbiome and mediating gut metabolism pathways associated with uric acid excretion.  相似文献   

7.
Using the titrimetry method, the researchers hope to discover the kidney stone dissolving properties of the ethyl acetate extracts of Bryophyllum pinnatum and Aerva lanata. The ethyl acetate extract of B. pinnatum has the ability to dissolve calcium oxalate crystals and exhibited strong antiurolithiatic properties, according to the findings. Both extracts outperformed the conventional medication Neeri in terms of antiurolithiatic activity. The phytochemicals included in both plant extracts were studied using HPLC analysis. As a result, ethyl acetate extract of B. pinnatum can be used as an alternative for the treatment of kidney stones in this investigation.  相似文献   

8.
Functionalized oxindoles and pyrrolizidines form the central structural framework for numerous natural products with extensive biological and pharmacological applications. The requirement for high regio- and stereoselectivity is the main obstacle in the synthesis of such five-membered heterocycles. Multicomponent cycloaddition reactions often provide an efficient and straightforward approach for the preparation of specific regio- and stereoisomers. In this article, the regio- and stereochemistry of the polar [3 + 2]-cycloaddition (32CA) reaction of azomethine ylides prepared by the reaction of isatin derivatives and L-proline with a series of (E)-3-(2-oxo-2-(pyren-1-yl)ethylidene)indolin-2-ones was investigated by experimental and theoretical methods. Among the isatin and (E)-3-(2-oxo-2-(pyren-1-yl)ethylidene)indolin-2-one derivatives, a remarkable inversion of regioselectivity was observed in the 32CA reaction of azomethine ylide generated by the reaction of L-proline and 5-chloroisatin or N-methyl-5-chloroisatin with (E)-5-chloro-3-(2-oxo-2-(pyren-1-yl)ethylidene)indolin-2-one. The regio- and stereochemical assignment of the structures of the cycloaddition products was determined by one- and two-dimensional (1D&2D) homonuclear and heteronuclear correlation nuclear magnetic resonance spectroscopy. The molecular mechanism as well as the regio- and stereoselectivity of the cycloaddition were investigated by means of global and local reactivity indices and a density functional theory (DFT) and explained in detail on the basis of the transition state stabilities of the reactants.  相似文献   

9.
Double transesterification from vegetable oils could play an important role in biodiesel and biolubricant production, with the possible implementation of biorefineries to replace refineries based on petroleum. The oxidative stability of the original sample will influence the quality of the intermediate and final products, recommending highly stable raw materials or the use of antioxidants to keep quality parameters during storage. The aim of this work was to obtain a stable biolubricant, assessing its production through a double transesterification with methanol and pentaerythritol from high-oleic safflower oil and adding antioxidants, paying attention to quality parameters. Consequently, a biorefinery that produced high-quality products was proposed. In conclusion, high biodiesel and biolubricant yields were obtained (>97 and >94%, respectively) with the following chemical conditions for the latter: FAME/alcohol ratio, 1:0.33; pressure, 260 mmHg; catalyst concentration, 1.0%; temperature, 160 °C. The oxidative stability of biodiesel complied with the standard (10.78 h) due to its high methyl oleate content (exceeding 80%), whereas this parameter was shorter for the biolubricant (2.86 h), possibly due to its molecular structure. Consequently, antioxidant addition was needed, and tert-Butylhydroquinone at low concentration (500 ppm) kept viscosity and acid number of high-oleic safflower biolubricant during oxidation conditions (up to 8 h). However, tannic acid did not keep these properties in biolubricant. In conclusion, by using the right antioxidant, all the products of the proposed biorefinery were stable during oxidizing conditions, making this biorefinery more competitive.  相似文献   

10.
11.
Histone deacetylases (HDACs) are key regulators of gene expression and have emerged as crucial therapeutic targets for cancer. Among the HDACs, inhibition of HDAC8 enzyme has been reported to be a novel strategy in the treatment of female-specific cancers. Most of the HDAC inhibitors discovered so far inhibit multiple HDAC isoforms causing toxicities in the clinic thus limiting their potential. Therefore, the discovery of isoform-selective HDAC8 inhibitors is highly desirable. In the present study, a combination of ligand and structure based drug design tools were utilized to build a statistically significant pharmacophore based 3D QSAR model with statistical parameters R2: 0.9964, and Q2: 0.7154, from a series of 31 known HDAC8 inhibitors. Top 1000 hits obtained from Virtual screening of Phase database were subjected to docking studies against HDAC8. Top 100 hits obtained were redocked into HDAC Class I (HDAC 1,2,3) and Class II isoforms (HDAC 4, 6) and rescored with XP Glide Score. Based on fitness score, XP glide score and interacting amino acid residues, five HDAC8 inhibitors (15) were selected for in vitro studies. The HDAC8 activity assay followed by enzyme kinetics clearly indicated Compounds 1, 2 and 3 to be potent HDAC8 selective inhibitors with IC50 of 126 pM, 112 nM, and 442 nM respectively. These compounds were cytotoxic to HeLa cells where HDAC8 is overexpressed but not to normal cells, HEK293. Also, they were able to induce apoptosis by modulating Bax/Bcl2, cleavage of PARP and release of Cytochrome C. Molecular Dynamics simulations observed most favorable interaction patterns and presented a rationale for the activities of the identified compounds. Selectivity against HDAC8 was due to exploitation of the architectural difference in the acetate release channel among class I HDAC isoforms.  相似文献   

12.
This review critically evaluates the plastic accumulation challenges and their environmental (primarily) and human (secondarily) impacts. It also emphasizes on their degradation and fragmentation phenomena under marine conditions. In addition, it takes into account the leachability of the various chemical substances (additives) embedded in plastic products to improve their polymeric properties and extend their life. Regardless of their effectiveness in enhancing the polymeric function of plastic products, these additives can potentially contaminate air, soil, food, and water. Several findings have shown that, regardless of their types and sizes, plastics can be degraded and/or fragmented under marine conditions. Therefore, the estimation of fragmentation and degradation rates via a reliable developed model is required to better understand the marine environmental status. The main parameter, which is responsible for initiating the fragmentation of plastics, is sunlight/UV radiation. Yet, UV- radiation alone is not enough to fragment some plastic polymer types under marine conditions, additional factors are needed such as mechanical abrasion. It should be also mentioned that most current studies on plastic degradation and fragmentation centered on the primary stages of degradation. Thus, further studies are needed to better understand these phenomena and to identify their fate and environmental effects.  相似文献   

13.
《Arabian Journal of Chemistry》2020,13(10):7445-7452
Human alpha (α1)-acid glycoprotein (AGP) is an acute phase protein whose plasma concentration increases several-folds in the presence of various diseases. The variability in AGP plasma concentration is expected to have a huge impact on the drug binding equilibrium. Therefore, a precise measurement of AGP-drug binding is of great demand for drug development. In the current study, an ionic liquid-based aqueous two-phase system combined with affinity capillary electrophoresis (ILATPS/ACE) was utilised in order to improve the accuracy of AGP-drug binding analysis through the measurements of electrophoretic mobilities. The utilisation of ILATPS has shown to have a positive impact on the stability of AGP activity solution during the storage for an extended period of time. In addition, the effect of various alkyl chains (C2-C10) of imidazolium-based ILs with concentrations ranging between 10.00 and 1000.0 μmol L−1 on the AGP binding with the anti-cancer drugs chlorambucil (CHL) and dacarbazine (DAC) was examined by the system developed (ILATPS/ACE). A 100.00 μmol L−1 1-ethyl-3-methylimidazolium chloride (EMImCl) prepared in the physiological buffer conditions containing AGP (5.00–100.00 µmol L−1) has provided an accurate apparent binding constant of 1.99 ± 0.11 and 6.95 ± 0.14 L mmol−1 with CHL and DAC respectively. Apart from the ACE analysis, EMImCl/phosphate buffer solution was found to be a distinguished system that could lengthen the stability of AGP activity for a period of time reaching 90 days during the solution storage at 4.00 °C. This effect is thought to be due to the easy conversion of one-phase EMImCl/phosphate buffer/AGP at the ambient lab temperature into the two-phase solution at refrigerator temperature, 4.00 °C, and vice versa. Therefore, the ILATP/ACE system could be used to enhance the accuracy for other AGP-drug bindings with a fast, easy to use, and cost-effective analysis.  相似文献   

14.
Fructus Psoraleae (FP), the dried ripe fruit of Psoralea corylifolia L., is a popular herbal medicine commonly applied for alleviating osteoporosis and vitiligo. But, until now, the dynamic variations of compounds in P. corylifolia have been less investigated during its growth, storage, and treatment by different temperatures, which is meaningful for guaranteeing the quality of FP. In this study, focused on these questions, with emphasis on the enzyme-driven dynamic transformation of coumarins, ultra-high performance liquid chromatography coupled with photodiode array detector (UHPLC-PDA) method was successfully established for the simultaneous determination of nine compounds. The distribution and accumulation of compounds were discussed and illuminated in different parts of P. corylifolia and samples harvested at different times. The characteristics of compounds' variation in flowers and fruits of P. corylifolia were identified. Through the market survey and quantitative study on FP, positive correlation was speculated between transformation from (iso)psoralenoside to (iso)psoralen via β-glucosidase and storage time, which was further confirmed by accelerated stability test. The effect of treated temperatures (40–210 °C) was unveiled on the enzyme activity and transformation from (iso)psoralenoside to (iso)psoralen in FP. And the focused compounds' transformation was mainly driven by β-glucosidase when the temperature was below 120 °C. Above 120 °C, β-glucosidase was completely inactivated, and the focused compounds' transformation was mediated by high-temperature, also the obvious degradation was found. Our results demonstrated that compounds' transformation characteristics arising from the growth, processing and storage of P. corylifolia are critical factors to ensure the quality of FP.  相似文献   

15.
Cancer is one of the major diseases that seriously threaten human health. Drug delivery nanoplatforms for tumor treatment have attracted increasing attention owing to their unique advantages such as good specificity and few side effects. This study aimed to fabricate a pH-responsive drug release multifunctional nanoplatform NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX. In the platform, Fe3+ doping enhanced the fluorescence intensity of NaGdF4:Yb, Er by 5.8 folds, and the mSiO2 shell substantially increased the specific surface area of nanomaterials (559.257 m2/g). The loading rates of chlorin e6 and doxorubicin hydrochloride (DOX) on NaGdF4:Yb,Er,Fe@Ce6@mSiO2-DOX reached 28.58 ± 0.85% and 87.53 ± 5.53%, respectively. Additionally, the DOX release rate from the nanoplatform was only 24.4% after 72 h at pH 7.4. However, under tumor microenvironment conditions (pH 5.0), the release rate of DOX increased to 85.3% after 72 h. The nanoplatform could generate reactive oxygen species (ROS) under 980 nm near-infrared excitation. Moreover, the nanoplatform exhibited a strong comprehensive killing efficiency against cancer cells. The viabilities of HeLa, MCF-7, and HepG2 cancer cells were only 18.5, 11.4, and 9.3%, respectively, after being treated with a combination of photodynamic therapy and chemotherapy. The constructed nanoplatform exhibits great application potential in cancer treatment.  相似文献   

16.
The green and high-value recycling of shrimp shell and straw remains a worldwide problem. This study aimed to investigate the potential utilization of a fermentation broth (FB) which contains shrimp shell and straw as a new source for preparation of biodegradable films. Aureobasidium pullulans and Photobacterium sp. LYM-1 were used in the fermentation. The cellulase activity was 115.92 U/mL and chitinase activity was 17.89 U/mL in FB. The polysaccharides concentration in FB was 1.05 mg/mL after 7 days of fermentation. An eco-friendly PVA-reinforced FB biodegradable film (FBBF) was successfully prepared and the effect of different plasticizers and surfactants on the mechanical, structural, and impermeability properties of the film was determined. The formation of new bonds between PVA and FB was proved by FTIR spectroscopy. The FBBF containing 0.25 % (w/v) glycerol and 0.01 % (v/v) tween-20 showed better strength properties. Elongation and water-swelling properties were highly improved by adding 0.2 % (m/v) citric acid. According to FE-SEM images, the smooth and tight surface of citric acid added FBBF was observed. Interestingly, the FBBF film showed good heat/moisture capacity, antifungal, and degradation properties. This report reveals a new green, and high-value recycling of straw and shrimp shell by the co-fermentation with A. pullulans and Photobacterium sp. LYM-1. It is also a novel way for the preparation of biodegradable film.  相似文献   

17.
Scutellariae Radix (SR), the dried root of Scutellaria baicalensis Georgia, is a famous Chinese materia medica that has been widely employed. Raw Scutellariae Radix (RSR), steamed Scutellariae Radix (SSR), and wine Scutellariae Radix (WSR) are adopted for use in clinical practice. Because of their easily confused appearance, they are always misused. Aiming at this problem, an ultra performance liquid chromatography coupled with photodiode array detector (UPLC-PDA) method was established to survey misuse of the RSR and the processed SR (SSR and WSR) in the market by employing baicalin (BC), wogonoside (WS), baicalein (BN), and wogonin (WN) as quality indicators. Fortunately, β-glucuronidase, which mediates conversion from flavone glycoside to aglycone, was identified in the RSR samples by the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The significant production of BN and WN was witnessed in the RSR samples, which did not occur in the SSR and WSR samples in virtue of the inactivated β-glucuronidase. Besides, the different capacities of β-glucuronidase were evaluated in the tested samples. In general, we provided the first evidence to scientifically identify RSR from SSR and WSR.  相似文献   

18.
19.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   

20.
Syzygium brachythyrsum is an important folk medicinal and edible plant in Yunnan ethnic minority community of China, however, little is known about the chemical and bio-active properties. The present study is aimed to identify the bioactive constituents with antioxidant and anti-inflammatory properties by an integrating approach. First, two new bergenin derivatives, brachythol A (1) and brachythol B (2), together with eleven known phenolic compounds (3–13) were isolated from bioactive fractions by phytochemical method. Among these isolated chemicals, five bergenin derivatives, along with 3 phenolics were found in Syzygium genus for the first time. Then, a further chemical investigation based on ultra-high-performance liquid chromatography-Q Exactive Orbitrap mass spectrometry resulted in a total of 107 compounds characterized in the bio-active fractions, including 50 bergenin derivatives, among which 14 bergenin derivatives and 14 phenolics were potential new natural chemicals. Most of the isolated compounds showed obvious antioxidant activities, while compounds 11, 12, and 13 had favorable performance. Eight compounds (2–5, 7, and 9–11) showed good inhibitory activity on nitric oxide (NO) production in macrophage RAW 264.7 cells. The structure–activity correlation analysis indicated that the antioxidation and anti-inflammatory activities enhanced when bergenin was esterified with gallic acid, caffeic acid or ferulic acid. This is the first report of bergenins in Syzygium genus and the richness in new bio-active bergenins and gallic acid derivatives indicated that Syzygium brachythyrsum is a promising functional and medicinal resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号