首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Croton antisyphiliticus is a medicinal plant widely used in the treatment of microbial infections, especially those affecting the genital tract. Crude extract, fractions and pure compound isolated from roots of this species were investigated to validate their antimicrobial activity against Escherichia coli and Staphylococcus aureus. The compound ent-kaur-16-en-18-oic acid was isolated as a major component (0.7% of crude extract), and its MIC value determined against S. aureus (ATCC 6538) was 250 μg/mL. This is the first phytochemical work on the species monitored with antimicrobial assay.  相似文献   

2.
The essential oils (EOs) have great potential as a natural alternative to preserve foods against spoilage and poisoning pathogens, and they are healthy and safe. Their incorporation in polymers has been of great interest in active packaging for preserving fresh food. This work aims to evaluate the effect of encapsulation of two different oils (linalool and eugenol) as antimicrobial agent activity against Escherichia coli, Salmonella enterica subsp. enterica serovar Choleraesuis, Staphylococcus aureus, and Listeria monocytogenes. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) evaluated the EOs and their capsules with polylactic acid biopolymer. It was analyzed using the agar disc-diffusion testing method to determine the inhibition zones. The active release curves were constructed to elucidate activity efficiency. The minimum bactericidal concentration (MBC) values on E. coli, Salmonella, S. aureus, and L. monocytogenes were 0.39%, 3.13%, 0.78%, 1.56%, and 0.39%, 12.50%, 0.39%, and 12.50%, for the eugenol and linalool, respectively. To eugenol against E. coli (60 mm) and linalool against Salmonella (32 mm) exhibited relevant inhibition zones results. The EOs released promoted the inhibition zone by the volume of the EOs released over 24 h (2.2 μL/L to eugenol and 1.5 μL/L to linalool). Moreover, UV–vis results determined the active release reporting that the capsules have a prolonged efficiency, continuing to release the active up to 40 days, indicating potential application in active food packaging, extending the shelf life of food.  相似文献   

3.
In this study, antimicrobial activities of water and methanol extract, and three phenolic fractions of the roots of Arbutus unedo L. were investigated. Poor antibacterial activity against both Staphylococcus aureus and Pseudomonas aeruginosa bacteria was shown with water and methanol extract. However moderate antibacterial activity was shown by water extract and phenolic fractions against Escherichia coli and S. aureus, respectively. The phytochemical screening of roots of A. unedo revealed the presence of quinones, anthraquinones reducteurs compounds, anthocyanins, tannins and flavonoids. Quantitative analysis showed that the roots were strongly dominated by anthocyanins compounds (3.65 mg g?1) followed by total flavonoids (0.56 mg?1) and flavones & flavonols (0.17 mg g?1).  相似文献   

4.
Novel structural hybrids of benzofuran–oxadiazole and benzofuran–triazole have been synthesized and evaluated for their potential against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli. The excellent antibiotic activity was shown by compounds 5c and 9c against S. aureus with minimum inhibitory concentration values in 1.74–5.16 mg/mL range. The estimation of in vitro antifungal activity of synthetic compounds was performed against Trichoderma harzianum, Aspergillus niger, and Metarhizium anisopliae. Among compounds 5a – 5j , only 5h and 5i showed promising antifungal potential against T. harzianum and A. niger, whereas compound 5j showed enhanced antifungal effect only against A. niger when their activity values were compared with standard drug amphotericin. No pronounced antifungal activity was shown by synthesized compounds 9a–j , except for compound 9g , which was active against all fungal strains having minimum inhibitory concentration values in 1.90–2.03 mg/mL range. In addition to antimicrobial evaluation, the synthesized compounds were also analyzed to study their effects on the catalytic potential of laccase, and it was found that among all, compound 9b showed very strong activity with maximum relative reactivity of 145% at 0.03‐mM concentration.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(10):7289-7301
Black pepper oils have been investigated frequently in the recent years. However, there is a significant variation in physicochemical properties and bioactivity of oils depended on extraction techniques. In this study, the systemic investigation of four various extraction methods was performed to evaluate the physicochemical characterizations, antioxidant and antibacterial activity. The investigation of 1H NMR, FTIR and UV–Vis spectra confirmed presence of non-volatile components in oils extracted through supercritical CO2 and hexane-soaking extractions which induced their typical thermal properties. The isothermal behaviour of extracted oils related to evaporation was within range of 3.2–7.3% (w/w) at 27 °C. The SEM images of the black pepper confirmed different operation manners of mechanism between extractions using the solvents and heating process. The lowest MIC for both essential oils from conventional hidrodistillation and microwave-assisted hidrodistillation against two bacteria including E. coli and B. subtilis were found to be 137 µg mL−1. The non-isothermal decomposition kinetics were investigated on the essential oil of microwave-assisted hydrodistillation extraction. The activation energies and pre-exponent factors of non-isothermal decomposition were found to be in range of 36.5–73.7 KJ mol−1 and 4.98 × 103–1.97 × 108 s−1, respectively, dependent on conversional fractions of the oil. The results revealed that chemical components, physicochemical properties and bioactivity of black pepper essential oils depended on the extraction techniques.  相似文献   

6.
Essential oils obtained from plants play critical roles in food and medicine. In this study, the phytochemical composition of Pulicaria crispa essential oil, and its antibacterial, antioxidant and anticancer properties were determined in vitro. The essential oil was extracted from the aerial parts of P. crispa through hydro-distillation using a Clevenger-type apparatus, and it was analyzed with GC-MS. The most dominant chemical constituents of the essential oil were sesquiterpenes (78.26%). The higher constituents were β-caryophyllene oxide (33.97%), modephene (23.34%), geranyl propionate (6.32%), geranyl isovalerate (6.74%), 4-cadinadiene (5%), humulene (4.05%), and β-caryophyllene (2.73%). The essential oil exhibited DPPH radical activity, and it exerted antibacterial effect against gram positive bacteria (Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. However, it had no antibacterial effect on gram negative bacteria (Pseudomonas aeruginosa, Shigella sonnei, Klebsiella pneumoniae and Escherichia coli). The P. crispa essential oil produced significant cytotoxic effects against Hep-G2, MCF-7, Coca-2, and HT-29 ?cells. The oil was most toxic to Hep-G2 cells, based on its IC20 and IC50 values. These results indicate that the essential oil from P. crispa has potent biological properties which can be useful in the food and pharmaceutical industries.  相似文献   

7.
The industrial processing of crude propolis generates residues. Essential oils (EOs) from propolis residues could be a potential source of natural bioactive compounds to replace antibiotics and synthetic antioxidants in pig production. In this study, we determined the antibacterial/antioxidant activity of EOs from crude organic propolis (EOP) and from propolis residues, moist residue (EOMR), and dried residue (EODR), and further elucidated their chemical composition. The EOs were extracted by hydrodistillation, and their volatile profile was tentatively identified by GC-MS. All EOs had an antibacterial effect on Escherichia coli and Lactobacillus plantarum as they caused disturbances on the growth kinetics of both bacteria. However, EODR had more selective antibacterial activity, as it caused a higher reduction in the maximal culture density (D) of E. coli (86.7%) than L. plantarum (46.9%). EODR exhibited mild antioxidant activity, whereas EOMR showed the highest antioxidant activity (ABTS = 0.90 μmol TE/mg, FRAP = 463.97 μmol Fe2+/mg) and phenolic content (58.41 mg GAE/g). Each EO had a different chemical composition, but α-pinene and β-pinene were the major compounds detected in the samples. Interestingly, specific minor compounds were detected in a higher relative amount in EOMR and EODR as compared to EOP. Therefore, these minor compounds are most likely responsible for the biological properties of EODR and EOMR. Collectively, our findings suggest that the EOs from propolis residues could be resourcefully used as natural antibacterial/antioxidant additives in pig production.  相似文献   

8.
The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Antioxidant activities of the essential oils were examined with DPPH radical scavenging assay, ABTS cation radical scavenging assay, and ferric reducing antioxidant power assay. Antimicrobial activities were evaluated by determining minimum inhibitory concentrations (MIC) and minimum microbiocidal concentrations (MMC). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the essential oils were also tested. A total of 46, 44, and 47 components were identified in the leaf, stem, and root oils, representing 95.66%, 97.35%, and 92.72% of total composition, respectively. The major compounds of three essential oils were α-pinene (16.60–42.02%), β-pinene (10.03–18.82%), camphene (1.56–10.95%), borneol (0.50–7.71%), δ-cadinene (1.52–7.06%), and β-elemene (1.86–4.45%). The essential oils were found to have weak antioxidant activities and cholinesterase inhibition activities. The essential oils showed more inhibitory effects against Staphylococcus aureus (S. aureus) than those of other strains. The highest antimicrobial activity was observed in the root oil against S. aureus, with MIC of 0.78 mg/mL. Therefore, K. coccinea essential oils might be considered as a natural antibacterial agent against S. aureus with potential application in food and pharmaceutical industries.  相似文献   

9.
Chemical composition of the essential oils and extracts and the antimicrobial activity of Miconia minutiflora were investigated. The flavanone glycosides, pinocembroside and pinocembrin-7-O-[4″,6″-HHDP]-β-D-glucose, were identified, along with other compounds that belong mainly to the triterpene class, besides the phenolics, gallic acid and methyl gallate. Sesquiterpenes and monoterpenes were the major compounds identified from the essential oils. Screening for antimicrobial activity from the methanolic extract of the leaves showed that the MIC and MMC values against the tested microorganisms ranged from 0.625 to 5 mg·mL−1 and that the extract was active against microorganisms, Staphyloccocus aureus, Escherichia coli, and Bacillus cereus.  相似文献   

10.
In an attempt to find new pharmacologically active molecules, we report here the synthesis and in vitro antimicrobial activity of various 2-(2-chloro-6-methyl(3-quinolyl))-3-[2-(4-chlorophenyl)-4-oxo(3-hydroquinazolin-3-yl)]-5-[(aryl)methylene]-1,3-thiazolidin-4-ones. In vitro antimicrobial activity of the title compounds are screened against two Gram positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), two Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa) and three strains of fungi (Candida albicans, Aspergillus niger, Aspergillus clavatus) using broth micro dilution method. Some derivatives bearing chloro or hydroxy group exhibited very good antimicrobial activity.  相似文献   

11.
The use of natural compounds with biocidal activity to fight the growth of bacteria responsible for foodborne illness is one of the main research challenges in the food sector. This study reports the preparation and physicochemical characterization of chitosan nanoparticles loaded with Thymus capitatus (Th-CNPs) and Origanum vulgare (Or-CNPs) essential oils. The nanosystems were obtained by ionotropic gelation technique with high encapsulation efficiency (80–83%) and loading capacity (26–27%). Nanoparticles showed a spherical shape, bimodal particle size distribution, and good stability (zeta potential values > 40 mV). The treatment of the nanosuspensions at different temperatures (4 and 40 °C) and storage times (7, 15, 21, and 30 days) did not affect their physicochemical parameters and highlights their reservoir ability for essential oils also under stressful conditions. Both Or-CNPs and Th-CNPs exhibited an enhanced bactericidal activity against foodborne pathogens (S. aureus, E. coli, L. monocytogenes) than pure essential oils. These ecofriendly nanosystems could represent a valid alternative to synthetic preservatives and be of interest for health and food safety.  相似文献   

12.
《Comptes Rendus Chimie》2009,12(5):612-621
In the present study, it was aimed to investigate the phytochemical profile and antimicrobial effects of Phlomis lunariifolia Sm., Phlomis amanica Vierh., Phlomis monocephala P.H. Davis, Phlomis sieheana Rech. fil, Phlomis armeniaca Willd. essential oils collected from Turkey. The Phlomis essential oils were obtained from the aerial parts by hydrodistillation and were subsequently analyzed both by gas chromatography (GC) and gas chromatography–mass spectrometry (GC–MS). Chromatographic separations followed by structure identification of individual compounds of interest from Phlomis essential oils were conducted using 1D and 2D NMR, FT-IR, UV and HRMS techniques. In addition, antimicrobial studies using a microdilution assay and TLC bioautography were applied to the essential oils and the relevant components. The analysis of the essential oils led to the identification of 143 compounds, where an unknown volatile compound was detected as the major compound (22.8% and 12.7%) in the essential oils of P. amanica and P. monocephala, respectively. After chromatographic clean up, the isolation and characterization of this compound resulted in (−)-8(14),15-isopimaradien-11α-ol. The sesquiterpene germacrene-D was identified as the major constituent of P. lunariifolia (7.7%), P. sieheana (16.6%) and P. armeniaca (23.4%) oils. 4-Methoxycarbonyl-7-methyl cyclopenta[c]pyrane – a fulvoiridoid – was obtained by acid hydrolysis from iridoid ipolamiide which was shown to be present in the oils of P. armeniaca (1.4%) and P. sieheana (0.2%). Furthermore, Phlomis essential oils were investigated for their antifungal properties using a TLC bioautographic assay where the diterpene was shown as the active principle against Candida albicans and Candida tropicalis when compared with standard antifungal agents. Minimum inhibitory concentrations against various human pathogenic bacteria (from 125 to >1000 μg/ml), C. albicans and C. tropicalis (62.5–1000 μg/ml), were determined using a microdilution assay. The results obtained from this study suggest that essential oils and their individual compounds thereof may be potential resource and ingredients for pharmaceuticals or cosmetics with antimicrobial activity.  相似文献   

13.
The aim of the present study was to determine the chemical composition and antioxidant activity of essential oils (EOs) from two Teucrium polium subspecies, to evaluate, also their antibacterial activities, against some nosocomial-bacteria. The phytochemical screening of essential oils was analyzed using gas chromatography-flame ionization detector (GC-FID) and gas chromatography-mass spectrometry analysis (GC-MS). The antibacterial activities were assessed by disc diffusion method and minimal inhibitory concentration (MIC), against Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Citrobacter koseri and Acinetobacter baumannii) and Gram-positive bacteria Staphylococcus aureus. The antioxidant potential was evaluated in vitro by three assays, namely free radical scavenging activity against 1,1-diphenyl-2-picrylhydrzyl (DPPH), ferric reducing activity power (FRAP) and total antioxidant capacity. Twenty-six components were identified in the EO of Teucrium polium subsp. aurum representing. Its major component was Caryophyllene (19.13%) followed by γ-Muurolene (13.02%), τ-cadinol, (11.01%), α-Gurjunene (9.2%), Rosifoliol (8.79%), 3-Carene (7.04%). However, twenty two components were identified in the EO of T. polium subsp. polium. Its major components are 3-carene (16.49%), γ-Muurolene (14.03%), α-pinene (9.94%), α-phellandrene (6.93%) and Caryophyllene (7.51%). The antibacterial activity of both essential oils showed a higher activity against tested nosocomial bacteria especially against S. aureus and A. baumannii. The EO of T. polium subsp. aureum showed better antioxidant activity as measured by DPPH and FRAP assays with IC50 values of 3.7 ± 0.2 mg/ml and 2.31 ± 0.11 mg/ml, respectively. The total antioxidant capacity assay showed that T. polium subsp. aureum had a significant activity with value to 3308.27 mg equivalent to ascorbic acid/g of EO. The Moroccan T. polium essential oils could be exploited as an antimicrobial agent for the treatment of several infectious diseases caused by bacteria, especially, those who have developed resistance to conventional antibiotics.  相似文献   

14.
The analysis of Thymus willdenowii Boiss &; Reut essential oils (TW EOs) shows 33 components accounting for (96.3–97.7%) of all identified. The main constituents of TW EOs were thymol (35.5–47.3%), p-cymene (13.9–23.8%), γ-terpinene (8.9–20.3%). The antioxidant assays revealed that all TW EOs tested showed strong activities, the antimicrobial effect of TW EOs has been tested against isolated clinical strains of Proteus mirabilis (ATCC 35659), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231), Bacillus cereus (ATCC 10876), and Aspergillus brasilliensis (ATCC 16404). The antimicrobial test indicates that TW EOs show an inhibition effect against all the tested bacteria with a MIC of 6.9 to 27.6 μg/mL?1. These results proving that the essential oils extracted from Thymus willdenowii Boiss &; Reut may be a new potential source of natural antimicrobial applied in pharmaceutical and food industries.  相似文献   

15.
Recently, the antimicrobial potential of essential oils extracted from plants has gained extensive research interest, primarily for the development of novel antimicrobial treatments to combat emerging microbial resistance. The current study aims at investigating the antimicrobial activity and chemical composition of essential oil derived from gold coin daisy, which is known as Asteriscus graveolens (EOAG). In this context, a gas chromatography-tandem mass spectrometry (GC-MS) analysis of EOAG was conducted to identify its phytoconstituents. The in vitro antioxidant capacity of EOAG was determined by the use of three tests, namely: 1,1-diphenyl-2-picrylhydrzyl (DPPH), ferric reducing activity power (FRAP), and total antioxidant capacity (TAC). The antimicrobial activity of EOAG against clinically important bacterial (Escherichia coli, K12; Staphylococcus aureus, ATCC 6633; Bacillus subtilis, DSM 6333; and Pseudomonas aeruginosa, CIP A22) and fungal (Candida albicans, ATCC 10231; Aspergillus niger, MTCC 282; Aspergillus flavus, MTCC 9606; and Fusarium oxysporum, MTCC 9913) strains was assessed. Antimicrobial efficacy was determined on solid (inhibition diameter) and liquid media to calculate the minimum inhibitory concentration (MIC). GC/MS profiling of EOAG revealed that 18 compounds were identified, with a dominance of α-Thujone (17.92%) followed by carvacrol (14.14%), with a total identification of about 99. 92%. The antioxidant activity of EOAG was determined to have IC50 values of 34.81 ± 1.12 µg/mL (DPPH), 89.37 ± 5.02 µg/mL (FRAP), and 1048.38 ± 10.23 µg EAA/mg (TAC). The antibacterial activity in a solid medium revealed that the largest diameter was recorded in P. aeruginosa (28.47 ± 1.44 mm) followed by S. aureus (27.41 ± 1.54 mm), and the MIC in S. aureus was 12.18 ± 0.98 µg / mL. For the antifungal activity of EOAG, the largest inhibition diameter was found in F. oxysporum (33.62 ± 2.14 mm) followed by C. albicans (26.41 ± 1.90 mm), and the smallest MIC was found in F. oxysporum (18.29 ± 1.21 µg/mL) followed by C. albicans (19.39 ± 1.0 µg/mL). In conclusion, EOAG can be useful as a natural antimicrobial and antioxidant agent and an alternative to synthetic antibiotics. Hence, they might be utilized to treat a variety of infectious disorders caused by pathogenic microorganisms, particularly those that have gained resistance to standard antibiotics.  相似文献   

16.
Essential oil of Citrus acida Roxb. var. sour lime was analyzed by GC–MS. Out of 59 components 18 were identified from their fragmentation pattern. Among the identified constituents, o-cymene (16.62%) was found as a major component followed by α-cedrene (10.57%), decadienal (8.043%), bisabolene (5.066%) and β-humelene (4.135%). Citronellyl acetate (2.371%), linalool acetate (2.371%), carvone (1.806%), decanone (1.474%), isopulegol acetate (1.296%), farnesol (1.254%), 4′-methoxyacetophenone (1.207%), and Δ-carene (1.070%) were found in minor quantities whereas α-terpineole (0.607%), dihydroxylinalool acetate (0.650%), cis-nerone (0.574%), caryophyllene oxide (0.433%), and 2,2-dimethyl-3,4-octadienal (0.375%) were found in minute amounts.The antimicrobial activity of the essential oil of C. acida was determined by disc diffusion method, against different bacteria (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Enterobacter aerogenes, Salmonella typhymurium) and fungi (Aspergillus ficuum, Aspergillus niger, Aspergillus fumigatus, Aspergillus flavis, Fusarium saloni, Fusarium oxysporum, Pencillium digitatum, Candida utilis). Maximum zone of inhibition was resulted against B. subtilis (22 mm) followed by C. utilis (20 mm) and B. cereus (19.8 mm), whereas the minimum zone of inhibition was shown by P. digitatum (10 mm). The inhibition zones, measured after 48 h and 96 h, showed that it is active against all tested bacteria and fungi. The results of antioxidant activity of essential oil of C. acida var. sour lime showed that it was able to reduce the stable radical DPPH to yellow-colored DPPH-H reaching 91.7% of DPPH scavenging effect comparative to ascorbic acid being a strong antioxidant reagent.  相似文献   

17.
Green synthesis gaining a significant importance for the preparation of nanoparticles (NPs) and NPs-based biocomposites gained much attention in biological applications. In the current study, gold (Au) nanoparticles were prepared via green approach using cinnamon extract. The Au nanocomposite (NC) was prepared with MnO2 nanofiber mesh structure. The NC was characterized by XRD, SEM, FT-IR, EDX, UV–visible and DLS techniques. The MnO2 nanofibers diameter was in 10–25 nm range, which was arranged in a mesh form and Au NPs was combined with nanofibers randomly. The MnO2-Au NC antimicrobial activity was measured against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus strains. The antimicrobial activity of MnO2-Au NC was highly promising against tested microorganisms in comparison to control (ciprofloxacin, a standard drug). The antimicrobial activity of MnO2-Au NC was found in following order; > S. aureus > E. coli > P. aeruginosa with the zones inhibition of 22, 18 and 15 (mn), respectively. The MIC (minimum inhibitory concentration) values were 316, 342 and 231 (µg/mL) for E. coli, P. aeruginosa and S. aureus, respectively. In view of promising antimicrobial activity, the MnO2-Au NC prepared via green approach could have potential applications in medical field and future study can be engrossed on the biocompatibility evaluation of MnO2-Au NC using bioassays.  相似文献   

18.
Jacaranda oxyphylla Cham. (Bignoniaceae) is a shrub found in the Brazilian cerrado and used in folk medicine to treat microbial infections. The aim of this study was to carry out a phytochemical screening and evaluate antioedematogenic, antimicrobial and antiacetylcholinesterase properties of J. oxyphylla crude extracts. All extracts analysed showed presence of terpenoids, which are potentially active chemical substances. A high AChE inhibitory activity for hexane extract from leaves and for the extracts from twigs was found. Ethanol extract from leaves of J. oxyphylla showed activity against Gram-positive (Staphylococcus aureus and Bacillus cereus) and Gram-negative (Escherichia coli) bacteria. This extract was also effective in inhibiting the stages of inflammation evaluated. Biological investigation and phytochemical screening of J. oxyphylla extracts provided additional evidence of its traditional medicinal value.  相似文献   

19.
Senna occidentalis and S. hirsuta are mostly gathered from the wild for medicinal use and have a disagreeable odour when crushed. The volatile oils isolated from fresh fruits of S. occidentalis and S. hirsuta were subjected to gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) and antimicrobial assays. GC and GC-MS analyses permitted the identification of 58 constituents. S. occidentalis oil was dominated by cyperene (10.8%), β-caryophyllene (10.4%), limonene (8.0%) and caryophyllene oxide (6.8%). The main components of S. hirsuta fruit oil were benzyl benzoate (24.7%), τ-cadinol (18.9%), 2,5-dimethoxy-p-cymene (14.6%) and β-caryophyllene (5.1%). S. occidentalis fruit oil exhibited better antimicrobial activity (MIC 78–312 μg/mL) against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Aspergillus niger compared with S. hirsuta oil. The compositions and the activities of the fruit essential oils of S. occidentalis and S. hirsuta are reported for the first time.  相似文献   

20.
The square pyramidal copper(II) complexes of N, O- donor ligand and ciprofloxacin have been synthesized. Synthesized complexes were characterized by physicochemical parameters like elemental analysis, electronic, FT–IR and LC–MS spectra. The complexes were screened for their antimicrobial activity against Gram(+Ve), i.e. Staphylococcus aureus, Bacillus subtilis, and Gram(?Ve), i.e. Serratia marcescens, Pseudomonas aeruginosa and Escherichia coli, microorganisms in terms of minimum inhibitory concentration and colony-forming unit. To determine the binding mode of complexes with Herring Sperm DNA, absorption titration and viscosity measurement were employed. DNA cleavage activity was carried out by gel electrophoresis experiment using supercoiled form of pUC19 DNA. The complexes were tested for their superoxide dismutase mimic activity in terms of IC50 value. Synthesized complexes were also screened for their cytotoxicity using brine shrimp lethality assay method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号