首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A series of indole derivatives has been synthesized and biologically evaluated to identify potent new lipoxygenase (LOX) inhibitors. All selected indole derivatives were screened for their LOX inhibition studies. Most of compounds showed good in vitro LOX inhibition properties exhibiting IC50 values in the range of 53.61 ± 0.14 to 198.61 ± 0.11 μM (mean ± SEM), as compared to the standard inhibitor baicalein with IC50 value 22.4 ± 1.3 μM. Structure activity relationship has been discussed and docking stimulation of most active compound 4f has also performed. Thermal stability and melting point of indole derivatives have been performed by thermal gravimetric analysis and differential scanning calorimetry analysis under nitrogen atmosphere at heating rate of 20 °C min?1. Compound 4f bearing bis-phenyl moiety has been found to be the most potent (IC50 53.61 ± 0.14 μM) and thermally most stable among the tested compounds. Imine (C=N) was found to be the key moiety for increasing the thermal stabilities of indole derivatives. FT-IR, NMR and elemental analysis techniques were performed for structural characterization.  相似文献   

2.
In this study, a novel series of isoxazole-naphthalene derivatives as tubulin polymerization inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against human breast cancer cell line MCF-7. Most of the synthesized compounds exhibited moderate to potent antiproliferative activity (IC50 < 10.0 μM), as compared to cisplatin (15.24 ± 1.27 μM). Among them, compound 5j containing 4-ethoxy substitution at phenyl ring was found to be the most active compound with IC50 value of 1.23 ± 0.16 μM. Mechanistic studies revealed that compound 5j arrested cell cycle at G2/M phase and induces apoptosis. Furthermore, in vitro tubulin polymerization assay showed that compound 5j displayed better inhibition activity on tubulin polymerization (IC50 = 3.4 μM) than colchicine (IC50 = 7.5 μM). Molecular docking study also revealed that compound 5j binds to the colchicine binding site of tubulin.  相似文献   

3.
This work has described the synthesis of novel class (125) of benzofuran based hydrazone. The hybrid scaffolds (125) of benzofuran based hydrazone were evaluated in vitro, for their urease inhibition. All the newly synthesized analogues (125) were found to illustrate moderate to good urease inhibitory profile ranging from 0.20 ± 0.01 to 36.20 ± 0.70 µM. Among the series, compounds 22 (IC50 = 0.20 ± 0.01 µM), 5 (IC50 = 0.90 ± 0.01 µM), 23 (IC50 = 1.10 ± 0.01 µM) and 25 (IC50 = 1.60 ± 0.01 µM) were found to be the many folds more potent than thiourea as standard inhibitor (IC50 = 21.86 ± 0.40 µM). The elevated inhibitory profile of these analogues might be due to presence of dihydroxy and flouro groups at different position of phenyl ring B attached to hydrazone skeleton. These dihydroxy and fluoro groups bearing compounds have shown many folds better inhibitory profile through involvement of oxygen of dihydroxy groups in hydrogen bonding with active site of enzymes. Various types of spectroscopic techniques such as 1H-, 13C- NMR and HREI-MS spectroscopy were used to confirm the structure of all the newly developed compounds. To find SAR, molecular docking studies were performed to understand, the binding mode of potent inhibitors with active site of enzymes and results supported the experimental data.  相似文献   

4.
Some promising 4-thiazolone derivatives as lipoxygenase inhibitors were designed, synthesized, characterized and evaluated for anti-inflammatory activity and respective ulcerogenic liabilities. Compounds (1b, 1e, 3b, and 3e) exhibited considerable in vivo anti-inflammatory activity (57.61, 79.35, 75.00, and 79.35%) against carrageenan-induced rat paw edema model, whereas compounds (1e, 3b, and 3e) were found active against the arachidonic acid-induced paw edema model (55.38, 55.38, and 58.46%). The most potent compound (3e) exhibited lesser ulcerogenic liability compared to the standard diclofenac and zileuton. Further, the promising compounds (1e and 3e) were evaluated for in vitro lipoxygenase (LOX; IC50?=?12.98 µM and IC50?=?12.67 µM) and cyclooxygenase (COX) inhibition assay (COX-1; IC50?>?50 µM and, COX-2; IC50?>?50 µM). The enzyme kinetics of compound 3e was evaluated against LOX enzyme and supported by in silico molecular docking and molecular dynamics simulations studies. Overall, the results substantiated that 5-benzylidene-2-phenyl-4-thiazolones are promising pharmacophore for anti-inflammatory activity.  相似文献   

5.
Hybrid analogs containing molecules are always the choice of different synthetic researcher due to their diverse biological applications and significantly more efficient. Heterocyclic being a good inhibitors against varied disease are most commonly used in drug designing and development. The current study also addressed the synthesis of pyrimidine-based thiazolidinone derivatives (113) using stepwise processes and their structure was confirmed using various characterization techniques such as 1HNMR, 13CNMR, and HREI-MS. Furthermore, the biological significances of the synthesized scaffolds were also explored and proved to be as anti-urease and anti-cancer moieties. Their inhibitory potentials were determined using the minimum inhibitory concentration (MIC) in the presence of their standard drugs, Thiourea (IC50 = 8.20 ± 0.20 µM) and Tetrandrineb (IC50 = 12.30 ± 0.10 µM) respectively. Structure activity relationship (SAR) was established for all the synthesized scaffolds and compared their inhibitory potentials in which scaffolds 3 (IC50 = 2.30 ± 0.30 and 3.20 ± 0.50 µM), 6 (IC50 = 3.10 ± 0.20 and 6.20 ± 0.10 µM), 7 (IC50 = 3.20 ± 0.20 and 3.80 ± 0.30 µM) and 10 (IC50 = 4.20 ± 0.20 and 5.10 ± 0.30 µM) exhibited the most influential activity. These compounds were subsequently examined using molecular docking experiments, which evaluate the binding interaction of ligands with enzyme active sites.  相似文献   

6.
A novel series of 1,3,5‐trisubstituted‐2‐pyrazoline derivatives ( 4a ‐ 4k ) was synthesized and their chemical structures characterized by 1H NMR, 13C NMR, and mass spectroscopy. These compounds were evaluated as inhibitors for of type A and type B monoamine oxidase (MAO) enzymes. The most common inhibitors of MAO enzymes used to treat depression and anxiety such as selegiline and moclobemide drugs were used as reference agents. A result of biological evaluation of these compounds revealed compounds 4c , 4d , and 4? as potent and selective MAO A inhibitors. The most active compound 4? , which is 2,4‐dimethoxy at phenyl ring, showed strong inhibitory activity at MAO A (IC50 of 0.0445 ± 0.0018μM). Furthermore, compounds 4c and 4d showed significant inhibition profile on MAO A with the IC50 values 0.1423 ± 0.0051μM and 0.2148 ± 0.0067μM, respectively.  相似文献   

7.
New benzimidazole analogues (118) were synthesized and characterized through different spectroscopic techniques such as 1H NMR, 13C NMR and HREI-MS. All analogues were screened for β-glucuronidase inhibitory potential. All analogues showed varied degree of inhibitory potentials with IC50 values ranging between 1.10 ± 0.10 to 39.60 ± 0.70 μM when compared with standard D-saccharic acid-1,4- lactone having IC50 value 48.30 μM. Analogues 17, 11, 9, 6, 1 and 13 having IC50 values 1.10 ± 0.10, 1.70 ± 0.10, 2.30 ± 0.10, 5.30 ± 0.20, 6.20 ± 0.20 and 8.10 ± 0.20 μM respectively, showed excellent β-glucuronidase inhibitory potential many folds better than the standard. All other analogues also showed good inhibitory potential better as compared to standard. Structure activity relationships (SAR) has been established for all compounds. The results from molecular docking studies supports the established SAR and developed a strong correlation with the results from in to vitro assay. The molecular docking results clearly highlighted how substituents like nitro and chloro affect the binding position of the active compounds in the active site. The docking results were also used to properly establish the effect of bulky substituents of least active compounds on reduced β-glucuronidase inhibitory activity. Compounds 118 were found non-toxic.  相似文献   

8.
Enzyme inhibitors are vital aspects for studying enzymes and are employed as drugs to treat certain disorders, thus implying pivotal role in drug discovery. In the current study, a series of triazole compounds 4(a-o) were synthesised to explore their inhibitory potential against α-glucosidase and urease enzymes. These derivatives with dichlorophenyl substituents were prepared by cyclization of thiosemicarbazides and their structures were confirmed through spectroanalytical techniques. The in vitro biological screening revealed that the compounds 4a, 4b, 4k, 4l, 4m, 4o having IC50 values of 121.09 ± 1.25, 137.22 ± 0.22, 110.4 ± 2.4, 114.79 ± 1.1, 146.72 ± 1.29, 94.21 ± 0.15 [µM] respectively, exhibited good potential α-glucosidase inhibition, in comparison to Acarbose: IC50 51.23 µM, while the compounds 4a, 4b, 4c, 4k, 4l, having IC50 values of 48.52 ± 0.39, 52.22 ± 1.37, 60.98 ± 0.34, 37.06 ± 0.51, 38.66 ± 1.7 [µM] respectively exhibited good potential for urease inhibition near to standard(Thiourea: IC50 24.14 [µM]). These in vitro findings were accompanied further by molecular docking simulations, which revealed significant binding interactions of the synthesized derivatives within the active sites of the enzymes.  相似文献   

9.
A series of natural product (2-phenyethyl)chromone analogues (334) were designed, synthesized, and screened for their α-glucosidase inhibitory activity. The results indicated that some of the synthesized derivatives displayed inhibitory activities against α-glucosidase with IC50 values ranging from 11.72 ± 0.08 to 85.58 ± 2.30 μM when compared to the standard drug acarbose (IC50 = 832.22 ± 2.00 μM). Among them, compound 4 with a hydroxyl group at the 7-position of chromone and a chloro group at the 4-position of the benzene ring, displayed the most significant inhibitory activity with the IC50 value of 11.72 ± 0.08 μM. The inhibitory mechanism of compound 4 against α-glucosidase was studied by enzyme kinetic, circular dichroism spectra, fluorescence quenching, and molecular docking. Sucrose loading test in vivo further demonstrated that it could decrease blood glucose levels after sucrose administration in normal Kunming mice. In vitro cytotoxicity showed that 4 exhibited low cytotoxicity against normal human cell lines. The ADME study suggested that all compounds are likely to be orally active as they obeyed Lipinski’s rule of five. In summary, our studies showed that these derivatives are a new class of α-glucosidase inhibitors.  相似文献   

10.
A series of 3,5‐disubstituted‐tetrahydro‐thiadiazine‐2‐thione ( 1 ‐ 16 ) have been synthesized, characterized by elemental analysis, infrared (IR), UV‐visible, 1H NMR, 13C NMR, and MS spectroscopic techniques, and screened against jack bean urease. Among 16 compounds, compounds ( 1 ), ( 2 ), ( 3 ), ( 4 ), ( 6 ), ( 7 ), and ( 9 ) demonstrated excellent urease inhibitory activity with IC50 values (9.8 ± 0.5, 11.0 ± 0.6, 16.0 ± 1.5, 17.2 ± 0.5, 15.4 ± 0.5, 19.7 ± 0.4, and 15.8 ± 0.2μM), respectively, even better than the standard thiourea (IC50 = 21 ± 0.01μM). However, compound ( 8 ) shows an almost same level of inhibition (IC50 = 22.9 ± 0.3μM), as like standard. In this work, we reported for the first time urease inhibitory activity of thiadiazine thiones and its molecular docking studies.  相似文献   

11.
The reaction of 3-amino-5-phenylaminopyrazoles 2 with 3-(dimethylamino) acrylonitrile derivatives resulted in a series of substituted pyrazolopyrimidine analogues 4 and 6. The DFT studies of the isolated compounds showed that the frontier molecular orbitals energy gap was close and in the 2.65–2.81 eV range where the derivative 6b has the lowest and both of 4a and 4c have the highest values. Meanwhile, the anticancer activity of the newly synthesized pyrazolopyrimidine analogues have been tested against several different cell lines (MCF-7, PC3, Hep-2 and WI38). The investigated pyrazolopyrimidines showed remarkable cytotoxicity activity against the MCF-7 and Hep-2 cell lines. In comparison to the effects of 5-fluorouracil, IC50 = 10.19 ± 0.42 and 7.19 ± 0.47, compounds 6a-c demonstrated potential anticancer activity with IC50 values for MCF-7 (10.80 ± 0.36–19.84 ± 0.49 μM) and Hep-2 (8.85 ± 0.24–12.76 ± 0.16 μM). Important details regarding the protein's binding sites were disclosed when the produced analogues docked with the crystal structure of the KDM5A protein, which was located in the protein data library.  相似文献   

12.
In this article, a series of betulinic acid derivatives (3a ~ 3u, 4a ~ 4e) were synthesized through a stepwise structure optimization and evaluated for their anti-α-glucosidase activities. All synthesized derivatives exhibited stronger anti-α-glucosidase activities (IC50: 0.56 ± 0.05 ~ 3.99 ± 0.23 μM) than betulinic acid (IC50: 7.21 ± 0.58 μM) and acarbose (IC50: 611.45 ± 15.51 μM). Compound 3q presented the outstanding inhibitory activity (IC50: 0.56 ± 0.05 μM), which was ~ 1100 time stronger than that of acarbose. Compound 3q was revealed as a reversible and noncompetitive α-glucosidase inhibitor by inhibitory mechanism assay. Fluorescence spectra, 3D fluorescence and CD spectra results showed that the interaction of compound 3q with α-glucosidase caused the conformational and secondary structure content change of α-glucosidase. Finally, the molecular docking simulated the interaction between compound 3q with α-glucosidase and the physicochemical parameter was assessed using SwissADME software.  相似文献   

13.
Fourteen previously unreported 3,4-seco-dammarane triterpenoids named Qingqianliusus A-N (114), along with four known 3,4-seco-dammarane triterpenoid derivatives (1518) were isolated from the 95 % ethanol extract of the Cyclocarya paliurus leaves. Compounds 1 and 2 possess a rare 3,11-heptacyclic lactone as natural product, and several pairs of the 3,4-seco-dammarane triterpenoid epimers with R/S configuration at C-24 were investigated and determined in detail for the first time. Compounds 8, 11, and 14 showed good α-glucosidase inhibitory effects with IC50 values of 4.97 ± 0.63, 7.08 ± 0.53, and 3.76 ± 0.77 μM, respectively. Meanwhile, compound 11 was also found potent inhibition rate of 35.83 % against COX-2, as compared with the positive control celecoxib (70.28 %). In addition, compounds 3, 7, 10, and 13 exhibited outstanding cytotoxicities against human gastric cancer cell lines (BGC-823) with IC50 values of 7.69 ± 0.21, 8.47 ± 0.41, 9.04 ± 0.61, and 8.86 ± 0.38 μM, respectively. Compounds 13 and 3 had modest activities on human colon cancer cell lines (HCT-116) with IC50 values of 8.80 ± 0.36 and 9.45 ± 0.93 μM, respectively.  相似文献   

14.
Five new arylnaphthalide lignans (1 ? 4a/4b), together with five known analogues (59), were isolated from whole plants of Saussurea medusa. Compound 4 was characterized as an aryltetralin lignan with an unusual C-7′-C-9 oxygen bridge group, and a chiral HPLC analysis was carried out to afford one pair of enantiomers (4a/4b). Structures of the new compounds were elucidated by extensive spectroscopic and electronic circular dichroism (ECD) calculations. All compounds were firstly isolated from S. medusa, and compounds 15, 7 and 8 had never been obtained from the genus Saussurea previously. Furthermore, this is the first report of arylnaphthalide lignans isolated from S. medusa. anti-inflammatory activities of the compounds were evaluated by determining their inhibitory activities on the production of NO by LPS-stimulated RAW 264.7 cells. Compounds (?)-4a and 5 exerted the significant inhibition activities with IC50 values of 13.4 ± 1.5 and 15.7 ± 1.1 μM, respectively, which even exceeded the positive control quercetin (IC50 = 15.9 ± 1.2 μM). Compounds 2, (+)-4b, 6 and 9 exhibited moderate inhibitory activities with IC50 values ranging from 19.7 ± 1.9 to 47.4 ± 3.1 μM. Further analysis by molecular docking showed that almost all the active compounds could interact with the amino acid residues of iNOS proteins, which also supported their anti-inflammatory activities.  相似文献   

15.
A series of 28 novel naproxen derivatives (4a-f, 5a-f, 6a-d, 7a-f, and 8a-f) have been designed, synthesized, and characterized. The synthesized derivatives were assessed as dual inhibitors for 15-lipoxygenase (LOX) and α-glucosidase enzymes and checked for cytotoxicity and ADME studies. The inhibitory potential of naproxen derivatives for 15- LOX was checked through two different methods, the UV absorbance method and the Chemiluminescence method. The biological activities result revealed that through the UV absorbance method, compound 4f (IC50 21.31 ± 0.32 µM) was found potent among the series followed by compounds 4e (IC50 36.53 ± 0.51 µM) and 4d (IC50 49.62 ± 0.12 µM) against standard drug baicalein (IC50 22.46 ± 1.32 µM) and quercetin (IC50 2.34 ± 0.35 µM), while through chemiluminescence method tested compounds showed significant 15-LOX inhibition at the range of IC50 1.13 ± 0.62 µM ?123.47 ± 0.37 µM. Among these compounds, 4e (IC50 1.13 ± 0.62 µM), 5b (IC50 1.19 ± 0.43 µM), 8c (IC50 1.23 ± 0.35 µM) were found most potent inhibitors against quercetin (IC50 4.86 ± 0.14 µM), and baicalein (IC50 2.24 ± 0.13 µM). The chemiluminescence method was found more sensitive than the UV method to identify 15-LOX inhibitors. Interestingly all synthesized compounds showed significant α-glucosidase inhibitory activity (IC50 1.0 ± 1.13 µM ? 367.2 ± 1.23 µM) even better than the standard drug acarbose (IC50 375.82 ± 1.76 µM), while compound 6c (IC50 1.0 ± 1.13 µM) and 7c (IC50 1.1 ± 1.17 µM) were found most potent compounds among the series even many folds better than the standard drug. The cell viability results showed that all compounds were less toxic, maintained cellular viability at the range of 99.8 ± 1.3% to 63.7 ± 1.5%. ADME and molecular docking studies supported drug-likeness and binding interactions of compounds with the targeted enzymes.  相似文献   

16.
17.
A series of new isatin–mesalamine conjugates ( 9a – g ) were synthesized via conjugation of isatin ( 3a ) and its derivatives ( 3b – 3d , 4 , 5 , and 6 ) with mesalamine ( 7 ) by using chloroacetyl chloride as a bifunctional linker. Compounds 3a – 3d were prepared by employing Sandmeyer reaction. Compounds 4 , 5 , and 6 were obtained from isatin ( 3a ) via previously reported methods. The synthesized compounds were characterized by IR, mass, 1H NMR, and 13C NMR spectral techniques. Synthesized compounds ( 3a – d , 4 , 5 , 6 , and 9a – g ) were evaluated for in vitro antioxidant activity by DPPH assay method using ascorbic acid as standard. Hybrids 9b (IC50 = 368.6 ± 3.5 μM) and 9f (IC50 = 335.1 ± 2.9 μM) showed better antioxidant activity than its parent compounds such as 3a (IC50 = 556.8 ± 2.9 μM), 5 (IC50 = 511.9 ± 3.6 μM), and 7 (IC50 = 768.9 ± 2.7 μM). Acetic acid‐induced ulcerative colitis in rat model was chosen to examine the antioxidant potential of the synthesized hybrids ( 9b and 9f ) in the amelioration of ulcerative colitis. Colonic myeloperoxidase and malondialdehyde enzymes were used as biomarkers of anti‐ulcerative colitis activity. In the present study, hybrids 9b and 9f reduced the levels of colonic myeloperoxidase and malondialdehyde enzymes significantly (p < 0.05) when compared with control (colitic), at a dose (0.03 mM/12.5 mg/kg b.w. p.o.) (50%) less than that of its parent moieties mesalamine (0.16 mM/25 mg/kg) and isatin (0.16 mM/25 mg/kg). Thus, the molecular hybridization was proved to be significant in enhancing the activity of hybrids 9b and 9f by reducing the dose.  相似文献   

18.
Lung cancer is one of the main reasons for death worldwide. The natural compounds with anti-lung cancer potential are of main interest and are considered a very promising alternative to replace or raise the efficiency of conventional drugs. Diethylstilbestrol, Enterodiol, Enterolactone, Flavokawain A, Flavokawain B, and Flavokawain C compounds showed excellent to good inhibitory activities against studied these enzymes with IC50 values in ranging between 9.66 ± 1.52 to 121.20 ± 15.87 μM for collagenase and 11.06 ± 1.87 to 27.31 ± 4.673 μM for elastase. Also, these compounds had In vitro anti-lung cancer activities. Comparison of the chemical and biological activities of the studied molecules was made by theoretical calculations. Gaussian sofware program was used for chemical activity. The Maestro molecular docking calculations were made to compare their biochemical activities. Afterwards, ADME/T calculations of the molecules were made.  相似文献   

19.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

20.
The design of novel molecules is imperative for the discovery of potent drugs in the medicinal chemistry field. In this work, new 1,3,5-substituted pyrazoline sulphonamides were synthesised using a two-step process with microwave assistance and evaluated biologically for their antimicrobial, antiproliferative, and anti-inflammatory properties. Most of the sulphonamides bearing 3-OH or 4-Cl groups exhibited significant inhibition of two Gram-positive bacteria, Bacillus subtillis and Staphylococcus aureus, and the yeast Candida albicans. Six compounds showed good activity against the cancer cell lines cervix carcinoma (Hep-2C) and human lung carcinoma (A549) with IC50 in the range 16.03 ± 1.63 to 22.75 ± 0.19 μM and 18.64 ± 1.02 to 20.66 ± 2.09 μM, respectively, and exhibited low toxicity against mammalian Vero cells. In evaluating in vitro anti-inflammatory behaviour, five compounds showed high inhibition of NO production over the standard reference, with low toxicity against murine macrophage cell line RAW 264.7. Further investigation found that two compounds, 1b and 18b, exhibited the highest activity when testing mouse ear oedema. The findings are promising for the discovery of potent new drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号