首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Zinc-modified nanocrystalline SnO2 electrodes are prepared by chemical treatment of the commercial SnO2 colloid with zinc acetate and their thickness effects on photovoltaic characteristics are investigated. Open-circuit voltage (Voc) and fill factor increase with increasing zinc concentration, while short-circuit photocurrent (Jsc) decreases. The normalized incident photon-to-current conversion efficiency (IPCE) shows that increase of zinc concentration utilizes long wavelength light. Concerning the conversion efficiency, optimal concentration within the present experiment is found to be 10 mol.% Zn2+ with respect to Sn4+. As increasing thickness of the films based on 10 mol.% zinc-modified SnO2 ranging from 0.76 to 8.12 μm, Jsc increases, reaches maximum and then decreases without change in Voc. The highest conversion efficiency of about 3.4% is achieved under 1 sun of AM 1.5 irradiation for the ∼6.3 μm-thick 10 mol.% zinc-modified SnO2 film with Jsc of 9.09 mA/cm2, Voc 600 mV and fill factor 62%.  相似文献   

2.
Variable-temperature powder neutron diffraction data reveal that Co3Sn2S2 crystallizes in the shandite structure (space group R3¯m, a = 5.36855(3) Å, c = 13.1903(1) Å at 300 K). The structural relationship between Co3Sn2S2 and the intermetallic compound CoSn, both of which contain Kagomé nets of cobalt atoms, is discussed. Resistivity and Seebeck coefficient measurements for Co3Sn2S2 are consistent with metallic behaviour. Magnetic susceptibility measurements indicate that Co3Sn2S2 orders ferromagnetically at 180(10) K, with a saturation moment of 0.29 μB per cobalt atom at 5 K. The onset of magnetic ordering is accompanied by marked anomalies in the electrical transport properties.  相似文献   

3.
4.
Li2O–MoO3–B2O3 glasses mixed with different concentrations of CuO (ranging from 0 to 1.2 mol%) were prepared. The samples were characterized by X-ray diffraction, scanning electron microscopy and differential scanning calorimetry. Optical absorption, luminescence, ESR, IR and dielectric properties (viz., dielectric constant ?′, loss tan δ and a.c. conductivity σac, over a wide range of frequency and temperature) of these glass materials have been investigated. The results of differential scanning calorimetric studies suggest that the glass forming ability is higher for the glasses containing CuO beyond 0.6 mol%. The analysis of results of the dielectric properties has revealed that the glasses possess high insulating strength when the concentration of CuO is >0.6 mol%. The variation of a.c. conductivity with the concentration of CuO passes through a maximum at 0.6 mol%. In the high-temperature region, the a.c. conduction seems to be connected with the mixed conduction viz., electronic conduction and ionic conduction. The optical absorption spectra of these glasses exhibited bands due to Cu+ ions in the UV region in addition to the conventional band due to Cu2+ ions in the visible region. The ESR spectral studies have indicated that there is a gradual adoption of Cu2+ ions from ionic environment to covalent environment as the concentration of CuO increases beyond 0.6 mol% in the glass matrix. The luminescence spectra excited at 271 nm have exhibited an intense yellow emission band centered at about 550 nm and a relatively broad blue emission band at about 450 nm; these bands have been attributed to the 3D1  1S0 transition of isolated Cu+ ions and 3D1  1S0 transition of (Cu+)2 pairs, respectively. The quantitative analysis of the results of all these studies has indicated that as the concentration of CuO is increased beyond 0.6 mol% in the glass matrix, a part of Cu2+ ions have been reduced to Cu+ ions that have influenced the physical properties of these glasses to a substantial extent.  相似文献   

5.
In this paper, we report structural, electrical, optical, and especially thermoelectrical characterization of iron (Fe) doped tin oxide films, which have been deposited by spray pyrolysis technique. The doping level has changed from 0 to 10 wt% in solution ([Fe]/[Sn] = 0–40 at% in solution). The thermoelectric response versus temperature difference has exhibited a nonlinear behavior, and the Seebeck coefficient has been calculated from its slope in temperature range of 300–500 K. The Hall effect and thermoelectric measurements have shown p-type conductivity in SnO2:Fe films with [Fe]/[Sn]  7.8 at%. In doping levels lower than 7.8 at%, SnO2:Fe films have been n-type with a negative thermoelectric coefficient. The Seebeck coefficient for SnO2:Fe films with 7.8 at% doping level has been obtained to be as high as +1850 μV/K. The analysis of as-deposited samples with thicknesses ~350 nm by X-ray diffraction (XRD) and scanning electron microscopy (SEM) has shown polycrystalline structure with clear characteristic peak of SnO2 cassiterite phase in all films. The optical transparency (T%) of SnO2:Fe films in visible spectra decreases from 90% to 75% and electrical resistivity (ρ) increases from 1.2 × 10?2 to 3 × 103 Ω cm for Fe-doping in the range 0–40 at%.  相似文献   

6.
The present work refers to high-temperature drop calorimetric measurements on liquid Al–Cu, Al–Sn, and Al–Cu–Sn alloys. The binary systems have been investigated at 973 K, up to 40 at.% Cu in case of Al–Cu, and over the entire concentrational range in case of Al–Sn. Measurements in the ternary Al–Cu–Sn system were performed along the following cross-sections: xAl/xCu = 1:1, xAl/xSn = 1:1, xCu/xSn = 7:3, xCu/xSn = 1:1, and xCu/xSn = 3:7 at 1273 K. Experimental data were used to find ternary interaction parameters by applying the Redlich–Kister–Muggianu model for substitutional solutions, and a full set of parameters describing the concentration dependence of the enthalpy of mixing was derived. From these, the isoenthalpy curves were constructed for 1273 K. The ternary system shows an exothermic enthalpy minimum of approx. ?18,000 J/mol in the Al–Cu binary and a maximum of approx. 4000 J/mol in the Al–Sn binary system. The Al–Cu–Sn system is characterized by considerable repulsive ternary interactions as shown by the positive ternary interaction parameters.  相似文献   

7.
《Solid State Sciences》2007,9(9):792-803
The crystal structure of Pb2SbS2I3 was solved at room temperature and 100 K. At 293 K it crystallizes in the orthorhombic system, space group Cmcm (No. 63), with unit cell parameters a = 4.3262(9), b = 14.181(3), c = 16.556(3) Å, V = 1017.7(4) Å3, Z = 4. The structure is disordered, and combines a split Pb site (s.o.f. = 0.50) with one mixed (Pb,Sb) site with Pb and Sb in two distinct sub-positions. At 100 K, it is monoclinic, space group P21/c, with unit cell parameters a = 7.3629(6), b = 16.466(3), c = 8.5939(7) Å, β = 107.14(2)°, V = 995.6(2) Å3, Z = 4. The structure is now fully ordered, without mixed sites. On the basis of bond valence calculations, new cation distributions are proposed for published structures of the Sn isotypes, Sn2SbS2I3 and Sn2SbSe2I3. A re-examination of the crystal structures of various (Pb/Sn/Sb) chalcogeno-iodides is presented according to modular analysis. All these structures can be described according to three types of 1D modules, (Pb/Sn)I4, (Sn)2I4 and (Pb/Sn/Sb)4(S/Se)2I4. Generally each type of 1D module gives one type of slab, and the final structure corresponds to a specific stacking of two or three among these slabs. A new structural model is proposed for “α-Sn2SI2”, which would have the non-stoichiometric composition (Sn5.420.58)S2(I6.870.12), ideally Sn27S10I34, with probably a narrow solid solution field on the SnS–SnI2 joint.  相似文献   

8.
《Tetrahedron: Asymmetry》2005,16(9):1595-1602
The spontaneous resolution reaction of racemic trans-2,3-dihydro-2,3-dipyridyl-benzo[e]indole 1 with Cd(ClO4)2·6H2O in the presence of 2-butanol under solvothermal reaction conditions favors the formation of crystal 2 [P-Cd(R,R,-1)2(ClO4)2], while a similar reaction in the presence of ethanol only favors the formation of crystal 3 [M-Cd(S,S,-1)2(ClO4)2]. The crystal structural determination shows that both 2 and 3 crystallize in chiral enantiomorphous space groups (P6122 and P6522) and their structures are 1D infinite chain, and are just enantiomorphous pairs most like. The spontaneous resolution process displays estimated ee values of ca. +0.6 for 2-butanol and ca. −0.4 for ethanol. Enantiomerically pure (S,S)-trans-2,3-dihydro-2,3-dipyridyl-benzo[e]indole (S,S,-1) can be obtained through the decomposition of mechanically separated 3. Additionally (S,S,-1) also crystallizes in a chiral space group (P21). The CD (circular dichroism) spectra of both 2 and 3 in the solid state are also approximately enantiomorphous pairs. However, their fluorescent spectra in the solid state display a moderate difference in maximum emission peaks (Δλ = 19 nm). Crystal data for 2: C44H34Cl2N6O8Cd, M = 958.07, hexagonal, P6122, a = 10.5488(5), c = 68.256(4) Å, α = γ = 90°, β = 120°, V = 6577.8(6) Å3, Z = 6, Dc = 1.451 mg m−3, R1 = 0.0498, wR2 = 0.1124, μ = 0.679 mm−1, S = 0.623, Flack χ = −0.02(6). For space group P6522, R1 = 0.0670, wR2 = 0.1602, S = 0.725 with a Flack value of 1.03(7); Crystal data for 3, C44H34Cl2N6O8Cd, M = 958.07, hexagonal, P6522, a = 10.5446(3), c = 68.265(3) Å, V = 6573.3(4) Å3, Z = 6, Dc = 1.452 mg m−3, R1 = 0.0444,wR2 = 0.1002, μ = 0.679 mm−1, S = 0.558, Flack χ = 0.01(5). For space group P6122, R1 = 0.0501, wR2 = 0.1178, S = 0.599 with a Flack value of 1.00(5). The low Flack parameter indicates that the absolute configurations of 2 and 3 are stated; Crystal data for (S,S)-1, C22H17N2, M = 323.39, orthorhombic, P212121, a = 9.2598(7), b = 9.4617(8), c = 19.1452(16) Å, V = 1677.4(2) Å3, Z = 4, Dc = 1.281 mg m−3, R1 = 0.0417, wR2 = 0.1191, T = 293 K, μ = 0.077 mm−1, S = 0.862.  相似文献   

9.
Single crystals of the new phase Ba5Ru2−xAl1+x−yCuyO11 (x=0.378, y=0.085) have been grown from a powder mixture of BaCO3, RuO2 and CuO in an alumina crucible. The new compound crystallizes isostructurally to Ba5Ir2AlO11. The crystal structure was determined by X-ray single-crystal diffraction technique and refined to a composition of Ba5Ru1.622(8)Al1.29(1)Cu0.085(6)O11 (orthorhombic, Pnma (No. 62), a=18.615(4) Å, b=5.771(1) Å, c=11.098(2) Å, Z=4, R1=0.048, wR2=0.075). The composition of the new compound obtained from crystal structure refinement is in good agreement with the result of electron probe microanalysis using wavelength-dispersive X-ray spectroscopy. Octahedra [RuO6] are connected via faces forming pairs. The central positions of the octahedra pairs are statistically occupied by Ru and Al atoms. These octahedra pairs are interconnected to one-dimensional chains extending along [010] via tetrahedra [Al1−yCuyO4]. Isotypic Ba5Ru1.5Al1.5O11 is a further member of the solid solution with the lattice parameters a=18.6654(5) Å, b=5.7736(1) Å, c=11.0693(3) Å according to Rietveld refinement on a microcrystalline sample.  相似文献   

10.
Heterometallic polymeric coordination compounds [{Ln(hfac)2(CH3OH)}2{Cu(dmg)(Hdmg)}2]n ([Ln2Cu2]n; Ln = Tb, Ho, and Er; H2dmg = dimethylglyoxime; Hhfac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) were synthesized, and the X-ray crystallographic analysis shows that their structures are isomorphous to those of the known ferrimagnetic [Gd2Cu2]n and [Dy2Cu2]n analogs. The exchange couplings in [Tb2Cu2]n, [Ho2Cu2]n, and [Er2Cu2]n were precisely evaluated by high-frequency EPR and pulsed-field magnetization studies, giving JTb?Cu/kB = ?0.77(2) K, JHo?Cu/kB = ?0.250(12) K and JEr?Cu/kB = ?0.149(15) K. They were comparable to those of the Gd and Dy analogs. The absolute value of the exchange coupling parameter monotonically decreases in the order of Gd, Tb, Dy, Ho, and Er.  相似文献   

11.
Thermodynamic properties of schapbachite (α-AgBiS2) in the phase assemblage α-AgBiS2–AgBi3S5–Bi have been studied by an EMF-technique. The EMF-measurements were made on the galvanic cell Pt(−)|Ag|AgI|AgBiS2 + AgBi3S5 + Bi|C|Pt(+), over the temperature range from (429 to 699) K. According to the EMF vs. temperature relations obtained, the enthalpy of the phase transformation from β-AgBi1+xS2 to α-AgBi1+xS2, at T = (465.55 ± 5) K, was calculated to be (7.3 ± 2.1) kJ · mol−1. New experimentally determined thermodynamic properties of the bismuth-saturated schapbachite (α-AgBi1+xS2), for each temperature region of the stable phases Bi(s) and Bi(l), were generated and analysed in detail. Based on the experimental results, Gibbs free energies of sulfidation reactions including Ag, Bi(l), S2(g), Ag2S and Bi2S3 to produce the bismuth-saturated schapbachite (α-AgBi1+xS2) have been evaluated. It has been observed that within the temperature range from (474 to 680) K, schapbachite saturated with bismuth (α-AgBi1+xS2) is thermodynamically more stable than the stoichiometric schapbachite (α-AgBiS2).  相似文献   

12.
One-dimensional (1-D) carbon nanofibers anchored with partially reduced SnO2 nanoparticles (SnO2/Sn@C) were successfully synthesized through a simple electrospinning method followed by carbon coating and thermal reduction processes. The partially reduced Sn frameworks, combined with the carbon fibers, provide a more favorable mechanism for sodiation/desodiation than SnO2. As a result, SnO2/Sn@C exhibits a high reversible capacity (536 mAh g 1 after 50 cycles) and an excellent rate capability (396 mAh g 1 even at 2 C rate) when evaluated as an anode material for sodium-ion batteries (SIBs).  相似文献   

13.
Polyaniline(PANI)/Tin oxide (SnO2) hybrid nanocomposite with a diameter 20–30 nm was prepared by co-precipitation process of SnO2 through in situ chemical polymerization of aniline using ammonium persulphate as an oxidizing agent. The resulting nanocomposite material was characterized by different techniques, such as X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Fourier Transform Infrared spectroscopy (FT-IR) and Ultraviolet–Visible spectroscopy (UV–Vis), which offered the information about the chemical structure of polymer, whereas electron microscopy images provided information regarding the morphology of the nanocomposite materials and the distribution of the metal particles in the nanocomposite material. SEM observation showed that the prepared SnO2 nanoparticles were uniformly dispersed and highly stabilized throughout the macromolecular chain that formed a uniform metal-polymer nanocomposite material. UV–Vis absorption spectra of PANI/SnO2 nanocomposites were studied to explore the optical behavior after doping of nanoparticles into PANI matrix. The incorporation of SnO2 nanoparticles gives rise to the red shift of π–π1 transition of polyaniline. Thermal stability of PANI and PANI/SnO2 nanocomposite was investigated by thermogravimetric analysis (TGA). PANI/SnO2 nanocomposite observed maximum conductivity (6.4 × 10?3 scm?1) was found 9 wt% loading of PANI in SnO2.  相似文献   

14.
New luminescent mononuclear and dinuclear copper(II) (S = 1/2) complexes [Cu(HL)(H2O)2](ClO4)2 (1a) and [Cu2(HL)2(μ-SO4)2]·2H2O (1b) were synthesized with the acyclic tridentate pyridine-2-carboxaldehyde-2-pyridylhydrazone ligand, HL (1). Interestingly, the mononuclear complex 1a can be converted into the disulfate bridged dimeric copper(II) complex 1b by passing freshly prepared SO2 through the basic medium. On excitation at 290 nm, the ligand fluoresces at 364 nm due to an intraligand 1(π–π1) transition. Upon complexation with copper(II), the emission peak is slightly blue shifted (356 nm, F/F0 0.76 for 1a and 354 nm, F/F0 0.89 for 1b) with a little quenching in the emission intensity. The association constants (Kass (5.06 ± 0.004) × 104 for 1a and Kass (5.46 ± 0.006) × 104 for 1b at 298 K) and the thermodynamic parameters have been determined by UV–Vis spectroscopy. The molecular structure of the complex 1b (Cu?Cu 4.456 Å) has been determined by single crystal X-ray diffraction studies. The complex 1b exhibits a strong interaction towards DNA as revealed from the Kb (intrinsic binding constant) 6.3 × 104 M?1 and Ksv (Stern–Volmer quenching constant) 2.93 values.  相似文献   

15.
《Solid State Sciences》2007,9(6):531-534
The most condensed crystalline fluoride that appears in the Al(OH)3-tren-HFaq.-ethanol system at 190 °C is found to be [H4tren]3/2·(Al6F24)·3H2O. The structure is monoclinic, P21/c, with a = 21.939(1) Å, b = 6.7180(2) Å, c = 23.329(1) Å, β = 111.324(2)°. (Al6F24) chains result from the connection of (Al7F30)9− polyanions by opposite AlF6 octahedra. Hydrogen bonds are established between the (Al6F24) chains and ordered or disordered [H4tren]4+ cations and water molecules.  相似文献   

16.
The enthalpies of mixing of liquid (Co + Cu + Zr) alloys have been determined using the high-temperature isoperibolic calorimeter. The measurements have been performed along three sections (xCo/xCu = 3/1, 1/1, 1/3) with xZr = 0 to 0.55 at T = 1873 K. Over the investigated composition range, the partial mixing enthalpies of zirconium are negative. The limiting partial enthalpies of mixing of undercooled liquid zirconium in liquid (Co + Cu) alloys are (−138 ± 18) kJ · mol−1 (the section xCo/xCu = 3/1), (−155 ± 10) kJ · mol−1 (the section xCo/xCu = 1/1), and (−130 ± 22) kJ · mol−1 (the section xCo/xCu = 1/3). The integral mixing enthalpies are sign-changing. The isenthalpic curves have been plotted on the Gibbs triangle. The main features of the composition dependence of the integral mixing enthalpy of liquid ternary alloys are defined by the pair (Co + Zr) and (Cu + Zr) interactions.  相似文献   

17.
《Polyhedron》2007,26(9-11):2142-2146
In this work, 4-pyridyl-phenylanthracene-iminonitroxide radical 2 was synthesized, which can make the coordination to metal ions. It was confirmed by the time-resolved ESR experiments that 2 has a photo-excited quartet (S = 3/2) high-spin state. Cu(II)(hfac)2(2)2 and Mn(II)(hfac)2(2)2 were synthesized by using 2 as a ligand. Their magnetic properties on the ground states were analyzed by three-spincluster model S1  SM  S2 (S1 = S2 = SM = 1/2 for Cu(II)(hfac)2(2)2 and S1 = S2 = 1/2, SM = 5/2 for Mn(II)(hfac)2(2)2). The exchange interactions (J/kB) between 2 and the metal ions were very weak (J/kBs were ferromagnetic for Cu(II)(hfac)2(2)2 and antiferromagnetic for Mn(II)(hfac)2(2)2). The molecular orbital calculations of 2 have suggested the strong interaction between the paramagnetic center of the metal ions and the photo-excited quartet high-spin state.  相似文献   

18.
A series of rigid and chiral C2-symmetric 18-crown-6 type macrocycles (S,S)-4, (S,S)-5, (S,S)-6 and (R,R)-2 bearing diamide–ester groups were synthesized. The binding properties of these macrocycles were examined for α-(1-naphthyl)ethylammonium perchlorates salts by an 1H NMR titration method. Taking into account the host employed, important differences were observed in the Ka values of (R)- and (S)-enantiomers of guests for macrocycles (S,S)-4 and (S,S)-6, KS/KR = 3.6, and KS/KR = 0.1 (KR/KS = 10.3) ΔΔG = 3.19 and ΔΔG = ?5.77 kJ mol?1, respectively. The results indicated excellent enantioselectivity of macrocyclic (S,S)-6 towards the enantiomers of α-(1-naphthyl)ethylammonium perchlorate salts.  相似文献   

19.
The influence of Sn substitution in LiMn2O4 thin films as a cathode has been studied via solution deposition to improve the electrochemical performance of thin film lithium batteries. LiSn0.025Mn1.95O4 thin films showed the most promising performance, i.e. a high capacity retention of 77% at 10 C after the 500th cycle, due to the increased average Mn valence state. The thin films of LiSnx/2Mn2?xO4 (x ? 0.10) showed significant precipitation of SnO2 and SnO after the cycling evaluation.  相似文献   

20.
A new type of lithium ion conducting solid electrolyte based on a cubic rare earth oxide was developed by co-doping LiNO3 and KNO3 into a (Gd1−xNdx)2O3 solid, which possesses large interstitial open spaces within the structure. Among the samples prepared, 0.6(Gd0.4Nd0.6)2O3–0.16LiNO3–0.24KNO3 exhibits the highest lithium ion conductivity of 8.05 × 10−2 and 1.35 × 10−3 S cm−1 at 400 and 100 °C, respectively, which is comparable to that of the LISICON materials. Pure Li+ ion conduction was successfully demonstrated by the dc electrolysis method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号