首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
One of the most important problems in utilizing Sn-based intermetallic compound anodes is its poor cyclability due to mechanical fatigue caused by volume change during lithium insertion and extraction processes. To overcome this problem, a new facile procedure to prepare three-dimensional (3D) macroporous materials of Sn–Ni alloy by using colloidal crystal template method is presented. The structural and electrochemical characteristics of 3D macroporous Sn–Ni alloy were examined using scanning electron microscopy (SEM), X-ray diffraction (XRD), galvanostatic cycling. When used as a negative electrode for a rechargeable lithium battery, the 3D macroporous Sn–Ni alloy electrode delivered a reversible capacity of 536.1 mAh g−1 up to 75th cycles.  相似文献   

12.
通过聚苯乙烯(PS)胶晶模板法合成了三维有序大孔(3DOM) SnO2. 运用扫描电镜、热重分析、X射线衍射、电化学充放电等多种方法对其结构和性能进行了表征和研究. SEM图表明PS胶晶模板微球排列规整, 大小均匀(直径275±10 nm), 形成多层六方紧密堆积排列; 煅烧除去模板后的3DOM SnO2呈三维多孔网络结构, 具有圆型和六边形的孔隙形貌, 其孔径大小为(215±10) nm; 孔壁由SnO2纳米晶粒组成, 壁厚为20~30 nm. XRD图谱表明经过煅烧除去模板后, 形成了纯SnO2相. 当作为锂离子电池负极材料时, 3DOM SnO2表现出较好的充放电容量和库仑效率. 此外, 这种合成方法简单、经济, 可进一步应用于其它锂离子电池材料的合成.  相似文献   

13.
Highly ordered three dimensionally macroporous carbon spheres (3DMPCS) were successfully prepared against removable colloidal silica crystal bead templates by carbonization of glucose. The unique structural characteristics of the well-developed three dimensionally interconnected macropores were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and nitrogen adsorption. The 3DMPCS have uniform large pore structures with size about 250 nm. Pt nanoparticles were supported on the macroporous carbon spheres by two aqueous impregnation methods, and it was found that the 3DMPCS supported Pt exhibited high electrocatalytic activity for methanol oxidation.  相似文献   

14.
溶胶凝胶模板法制备羟基磷灰石纳米线   总被引:2,自引:1,他引:1  
以氯化钙和五氧化二磷的醇溶液为前驱体溶液,多孔阳极氧化铝(AAO)膜为模板,通过溶胶凝胶-模板法成功制备出羟基磷灰石(Ca10(PO4)6(OH)2,HAP)纳米线;利用扫描电镜、能量色散谱仪、透射电镜、X射线衍射仪及傅立叶变换红外光谱仪等分析了产物的组成和微结构;并讨论了纳米线的生长机理.结果表明,所制备的羟基磷灰石纳米线直径约为50nm、长度达20μm,分别与模板的孔径和厚度一致.  相似文献   

15.
以磷钨酸(H3PW12O40)和氯化铯(CsCl)为原料, 两亲型三嵌段共聚物F127为模板剂, 按不同的Cs/P比制备了一系列介孔磷钨酸铯盐(CsxH3-xPW12O40, m-CsPW). 通过X射线粉末衍射(XRD)、 场发射扫描电子显微镜(FESEM)、 场发射透射电子显微镜(FETEM)、 N2吸附-脱附测试和小角X射线散射(SAXS)等手段对所得样品进行了表征. 结果表明, 样品是由纳米微晶组装而成的晶态介孔材料. 以三甲基膦为探针分子, 通过31P魔角旋转固体核磁共振波谱(31P MAS NMR)测定了样品酸处理前后的酸密度和酸强度. 以5,7-二羟基-4-甲基香豆素的Pechmann缩合反应为模型反应, 考察了样品的酸性质与催化活性之间的关系.  相似文献   

16.
A variety of mono-oxidized pyridine, bipyridine, terpyridine, and pyridine/pyridazine are readily prepared under mild conditions using Pyrolusite MnO2. This phase has been characterized by means of X-ray powder diffraction and scanning electron microscopy. The oxidative activity is in keeping with the nature, morphology, and surface area of the MnO2 reagent.  相似文献   

17.
Three-dimensionally ordered macroporous (3DOM) magnesium (Mg) oxide (MgO), MgSO4, calcium (Ca) carbonate (CaCO3), and strontium (Sr) carbonate (SrCO3) were prepared using a colloidal crystal of polymer spheres as a template. Ethanol or ethanol-water solution of metal salts (acetate or nitrate) and citric acid was infiltrated into the void of the colloidal crystal template of a monodispersed poly(methyl methacrylate) (PMMA) sphere. Heating of this PMMA-metal salt-citric acid composite produced the desired well-ordered 3DOM materials with a high pore fraction, which was confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) diffuse reflectance spectra. The presence of citric acid is crucial for production of the 3DOM structures. Reaction of citric acid with metal salt produces metal citrate solid in the void of PMMA spheres, which is necessary to maintain the 3DOM structure during the calcination process. 3DOM CaCO3 shows opalescent colors because of it's photonic stop band properties.  相似文献   

18.
Ordered macroporous semiconductors CdS and ZnS with regular arrays of spherical pores have been fabricated by poly (styrene-acrylic) (PSA) colloidal crystal template. It was found that the exact three-dimensional (3D) structure of the template had been imprinted in the final material.  相似文献   

19.
Three-dimensionally ordered macroporous (3DOM) lanthanum-iron-oxide (LaFeO3) with different pore diameters was prepared using a colloidal crystal of polymer spheres with different diameters as templates. Ethylene glycol-methanol mixed solution of metal nitrates was infiltrated into the void of the colloidal crystal template of a monodispersed poly(methyl methacrylate) (PMMA) sphere. Heating of this PMMA-metal salt-ethylene glycol composite produced the desired well-ordered 3DOM LaFeO3 with a high pore fraction, which was confirmed by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), mercury (Hg) porosimetry, and ultraviolet-visible (UV-vis) diffuse reflectance spectra. 3DOM LaFeO3 with pore diameters of 281 and 321 nm shows opalescent colors because of photonic stop band properties. Catalytic activity of the 3DOM LaFeO3 for combustion of carbon particles was enhanced by a potassium cation, which was involved from K2S2O8 used as a polymerization initiator.  相似文献   

20.
三维大孔TiO2光催化剂的制备及其催化性能   总被引:3,自引:0,他引:3  
 以聚甲基丙烯酸甲酯微球为模板,以钛酸正丁酯为原料,采用溶胶-凝胶法制备了具有三维结构的大孔TiO2. 采用差示扫描量热、热重-微分热重、X射线衍射、红外光谱、扫描电子显微镜和氮气吸附等手段对样品进行了表征. 结果表明,高温热处理后得到的三维大孔TiO2光催化剂的孔径为200 nm左右,孔径分布均匀, TiO2纳米晶粒中锐钛矿相和金红石相的含量分别为82%和18%. 光催化氧化实验表明,此种三维结构的TiO2对甲基橙溶液具有较好的光催化氧化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号