首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 31 毫秒
1.
A particle/droplet image analysis (PDIA) system employing LED-illumination was designed. Freezing the moving droplets using high speed camera instead of stroboscopic illumination, the system had no requirement to synchronize the backlight and the camera. It featured low cost, low power consumption and simple optical configuration in comparison to laser-based systems. Only focused droplets in images were counted. Given the sample size of the system was relatively small, an upper-limit lognormal distribution was used to fit the actual data to represent the spray patterns. The accuracy of the diameter measurement was verified using precisely manufactured balls. Comparisons with two laser-based systems were given and the system’s capacity to distinct spray patterns were demonstrated in nozzle classification experiments.  相似文献   

2.
Seemingly contradictory findings between studies are a major issue in nanoecotoxicological research and have been explained as a result of the lack of comparability between assay methods, with dispersion of nanomaterials being identified as a key factor. Here we show the use of a multivariate method, principal component analysis (PCA), as a tool in protocol development and categorization of dispersion quality. Results show the significance of particle concentration within a protocol, and its effect on repeatability. Our results suggest that future studies should involve the use of PCA as a powerful data exploration tool to facilitate method development, comparability and integration of data across different laboratories.  相似文献   

3.
A novel method is developed for in-line measurements of particle size, velocity and concentration in a dilute, particulate two-phase flow based on trajectory image processing. The measurement system consists of a common industrial CCD camera, an inexpensive LED light and a telecentric lens. In this work, the image pre-processing steps include stitching, illumination correction, binarization, denoising, and the elimination of unreal and defocused particles. A top-hat transformation is found to be very effective for the binarization of images with non-uniform background illumination. Particle trajectories measured within a certain exposure time are used to directly obtain particle size and velocity. The particle concentration is calculated by using the statistics of recognized particles within the field of view. We validate our method by analyzing experiments in a gas-droplet cyclone separator. This in-line image processing method can significantly reduce the measurement cost and avoid the data inversion process involved in the light scattering method.  相似文献   

4.
In particle sizing by light extinction method, the regularization parameter plays an important role in applying regularization to find the solution to ill-posed inverse problems. We combine the generalized cross-validation (GCV) and L-curve criteria with the Twomey-NNLS algorithm in parameter optimization. Numerical simulation and experimental validation show that the resistance of the newly developed algorithms to measurement errors can be improved leading to stable inversion results for unimodal particle size distribution.  相似文献   

5.
Discrete element modeling was used to investigate the effect of particle size distribution on the small strain shear stiffness of granular soils and explore the fundamental mechanism controlling this small strain shear stiffness at the particle level. The results indicate that the mean particle size has a negligible effect on the small strain shear modulus. The observed increase of the shear modulus with increasing particle size is caused by a scale effect. It is suggested that the ratio of sample size to the mean particle size should be larger than 11.5 to avoid this possible scale effect. At the same confining pressure and void ratio, the small strain shear modulus decreases as the coefficient of uniformity of the soil increases. The Poisson’s ratio decreases with decreasing void ratio and increasing confining pressure instead of being constant as is commonly assumed. Microscopic analyses indicate that the small strain shear stiffness and Poisson’s ratio depend uniquely on the soil’s coordination number.  相似文献   

6.
A new image processing method based on the high-speed camera is proposed to identify, locate, and track clusters. The instantaneous characteristic parameters of particle clusters in the riser of the circulating fluidized bed (CFB) can be acquired, such as solids holdup, vertical velocity, lateral displacement, aspect ratio and near-circularity. Experiments were carried out with glass bead particles, river sand particles and FCC particles. The time series of images of gas–solid flow in a CFB riser with a 100 mm × 25 mm cross-section and 3.2 m in length were obtained using high-speed cameras. The k-means++ clustering algorithm is utilized to identify the clusters, centroid is applied to locate the clusters, and the cross-correlation algorithm is employed to track the specific clusters and number them to get the instantaneous characteristic parameters. The results illustrate that the shapes of clusters in the center area are closest to circle, moving upwards at a uniform speed, while the clusters in the side-wall area are mostly elongated or long chain-like, moving slowly downwards. In the transition area, the clusters are more complex, moving upwards at a constant speed, and having large lateral displacement. The results show that the image processing method used in this study is successful in acquiring the dynamic and structural parameters of the clusters simultaneously.  相似文献   

7.
Gaining in-depth insights into the effects of particle shapes and packing style on ethylene oxidation reaction is of paramount industrial importance. In this work, reactor models of five packing structures with different particle shapes and three packing structures with different packing styles are established by employing software Blender and COMSOL Multiphysics to explore how the reaction-diffusion behaviors affect ethylene oxidation process. The reliabilities of rigid body dynamics model and particle-resolved reactor model are verified by comparing simulated and experimental pressure drops and ethylene conversions. In all the five packing structures with laminar flow conditions, the high bed porosity and low total particle surface area for the trilobe packing structure give rise to the lowest pressure drop of 27.8 Pa/m, while the internal voids cutting mode provides the excellent heat transfer capacity for the Raschig ring packing structure and the highest ethylene conversion and thereby the highest bed temperature rise of 25.1 K for the four-hole cylinder packing structure. Based on these analyses, changing the packing style to the bottom-up Raschig ring - four hole cylinder packing structure would be a good strategy for the effectively lowered reactor temperature rise by 4.8 K together with the slightly reduced ethylene conversion.  相似文献   

8.
Grouser wheels have been used in planetary rovers to improve mobility performance on sandy terrains. The biggest difference between a wheel with and without grousers is the soil behavior beneath the wheel as the grousers shovel the soil. By analyzing the soil flow, we gain insight into the mechanics dominating the interaction between the wheel and the soil, directly impacting performance. As the soil flow varies depending on the soil properties, the effects of soil type on soil behavior and wheel-traveling performance should be studied. This paper reveals the difference in soil flow and wheel performance on cohesive and non-cohesive soils. We conducted a series of single wheel tests over different types of soils under several wheel-traveling conditions. Soil flow was visualized by using particle image velocimetry (PIV). The experimental results indicate that soil flow characteristics highly depend on the shear strength of the soil. The cohesive soil exhibited lower fluidity due to its higher shear strength. At the same time, the wheel displayed a higher traveling performance over the cohesive soil, that is, a lower slip ratio.  相似文献   

9.
A new approach for simulating the formation of a froth layer in a slurry bubble column is proposed. Froth is considered a separate phase, comprised of a mixture of gas, liquid, and solid. The simulation was carried out using commercial flow simulation software (FIRE v2014) for particle sizes of 60–150 μm at solid concentrations of 0–40 vol%, and superficial gas velocities of 0.02–0.034 m/s in a slurry bubble column with a hydraulic diameter of 0.2 m and height of 1.2 m. Modelling calculations were conducted using a Eulerian–Eulerian multiphase approach with k–ε turbulence. The population balance equations for bubble breakup, bubble coalescence rate, and the interfacial exchange of mass and momentum were included in the computational fluid dynamics code by writing subroutines in Fortran to track the number density of different bubble sizes. Flow structure, radial gas holdup, and Sauter mean bubble diameter distributions at different column heights were predicted in the pulp zone, while froth volume fraction and density were predicted in the froth zone. The model was validated using available experimental data, and the predicted and experimental results showed reasonable agreement. To demonstrate the effect of increasing solid concentration on the coalescence rate, a solid-effect multiplier in the coalescence efficiency equation was used. The solid-effect multiplier decreased with increasing slurry concentration, causing an increase in bubble coalescence efficiency. A slight decrease in the coalescence efficiency was also observed owing to increasing particle size, which led to a decrease in Sauter mean bubble diameter. The froth volume fraction increased with solid concentration. These results provide an improved understanding of the dynamics of slurry bubble reactors in the presence of hydrophilic particles.  相似文献   

10.
11.
A heavy haze episode caused by agricultural burning occurred in Nanjing from November 7 to November 8, 2009. PM10 samples were collected on normal and hazy days from November 1 to November 14, 2009 at both city and suburban sites of Nanjing. Sixteen PAHs were measured during the day and at night. The results show that the concentrations of the particles were as high as 579.55 and 573.43 μg/m3 during the haze episode at the city and suburban sites, respectively, 3–4 times higher than those on a normal day. The proportions of fine particles during the haze episode were also higher than those on a normal day. The changes in the concentrations of PAHs were in accordance with the concentrations of the particles. High-molecular-weight PAHs composed approximately 80% of the total PAHs on normal days and during the haze episode. The concentration of PAHs in fine fractions significantly increased during the haze episode, and this increase was most obvious at night at the city site. The proportion of total carcinogenic PAHs in fine particles was relatively high during the haze episode at both sampling sites, particularly at night at the city site.  相似文献   

12.
We present the first measurements of relative velocity statistics of inertial particles in a homogeneous isotropic turbulent flow with three-dimensional holographic particle image velocimetry (holographic PIV). From the measurements we are able to obtain the radial relative velocity probability density function (PDF) conditioned on the interparticle separation distance, for distances on the order of the Kolmogorov length scale. Together with measurements of the three-dimensional radial distribution function (RDF) in our turbulence chamber, these statistics, in principle, can be used to determine interparticle collision rates via the formula derived by Sundaram and Collins (1997). In addition, we show temporal development of the RDF, which reveals the existence of an extended quasi-steady-state regime in our facility. Over this regime the measured two-particle statistics are compared to direct numerical simulations (DNS) with encouraging qualitative agreement. Statistics at the same Reynolds number but different Stokes numbers demonstrate the ability of the experiment to correctly capture the trends associated with particles of different inertia. Our results further indicate that even at moderate Stokes numbers turbulence may enhance collision rates significantly. Such experimental investigations may prove valuable in validating, guiding and refining numerical models of particle dynamics in turbulent flows.  相似文献   

13.
Wheeled vehicle mobility on loose sand is highly subject to shear deformation of sand around the wheel because the shear stress generates traction force of the wheel. The main contribution of this paper is to improve a shear stress model for a lightweight wheeled vehicle on dry sand. This work exploits two experimental approaches, an in-wheel sensor and a particle image velocimetry that precisely measure the shear stress and shear deformation generated at the interaction boundary. Further, the paper improves a shear stress model. The model proposed in this paper considers a force chain generated inside the granular media, boundary friction between the wheel surface and sand, and velocity dependency of the friction. The proposed model is experimentally validated, and its usefulness is confirmed through numerical simulation of the wheel traction force. The simulation result confirmed that the proposed model calculated the traction force with an accuracy about 70%, whereas the conventional one overestimated the force, and its accuracy was 13% at the best.  相似文献   

14.
Buoyancy-driven convection within a cavity, whose sidewalls are heated and cooled, is a problem of great interest, because it has applications in heat transfer and mixing. Most studies to date have studied one of two cases: the steady-state case or the development of the transient flow as it approaches steady state. Our main concern was to study the response of the cavity to time-varying thermal boundary conditions. We therefore decided to observe the flow phenomena within a convection cavity under sinusoidal thermal forcing of the sidewalls. To map the flow properly, it is necessary to have simultaneous kinematic and thermal information. Therefore, the digital particle image thermometry and velocimetry (DPITV) is used to acquire data. Implementing this technique requires seeding the flow with encapsulated liquid crystal particles and illuminating a cross section of the flow with a sheet of white light. Extraction of the thermal and kinematic content is in two parts. For the first, the liquid crystals will reflect different colors of the visible spectrum, depending on the temperatures to which they are subjected. Therefore, calibrating their color reflection with temperature allows for the extraction of the thermal content. For the second part, the kinematic information is obtained through the use of a digital cross-correlation particle image velocimetry technique. With the use of DPITV, the flow within a convection cavity is mapped and studied under steady forcing and sinusoidally forced boundary conditions at the Brunt-Väisälä frequency. For the sinusoidally forced case, three cases are studied. In the first, the heating between the two walls is in phase. In the second, the heating between the two walls is 180° out of phase. In the third, the heating between the two walls is 90° out of phase. For steady forcing, the thermal plots show that the flow develops a linearly stratified profile within the center of the cell. At the sidewalls, however, owing to forcing, hot/cold thermal boundary layers develop at the left/right walls. These hot/cold thermal boundary layers then turn around the upper-left/lower-right corners and develop into intrusion layers that extend across the top and bottom walls. The vorticity and streamlines show that the bulk of the fluid motion is concentrated around the walls, whereas the fluid within the center of the cell remains stationary. For the sinusoidally forced cases, the thermal plots show the existence of many thermal “islands,” or pockets of fluid where the temperature is different with respect to its surroundings. The vorticity plots show that the center of the cell is mostly devoid of vorticity and that the vorticity is mainly confined to the sidewalls, with some vorticity at the top and bottom walls. For the 0° forcing, the streamlines show the development of two counterrotating rollers. For the 180° forcing, the streamlines show the development of only one roller. Finally, for the 90° forcing, the streamlines show the development of both a two-roller and a one-roller system, depending on the position within the forcing cycle.  相似文献   

15.
An improved quantum-behaved particle swarm optimization (IQPSO) algorithm is employed to determine aerosol size distribution (ASD). The direct problem is solved using the anomalous diffraction approximation and Lambert–Beer's Law. Compared with the standard particle swarm optimization algorithm, the stochastic particle size optimization algorithm and the original QPSO, our IQPSO has faster convergence speed and higher accuracy within a smaller number of generations. Optimization parameters for the IQPSO were also evaluated; we recommend using four measurement wavelengths and 50 particles. Size distributions of various aerosol types were estimated using the IQPSO under dependent and independent models. Finally, experimental ASDs at different locations in Harbin were recovered using the IQPSO. All our results confirm that the IQPSO algorithm is an effective and reliable technique for estimating ASD.  相似文献   

16.
This study aims to develop a wheel-soil interaction model for a lightweight wheeled vehicle by measuring the normal stress distribution beneath the wheel. The main contribution of this work is to clarify the wheel-soil interaction using a wheel testbed that equips multiple sensory systems. An in-wheel sensor accurately measures the normal stress distribution as well as the contact angles of the wheel. Particle image velocimetry with a standard off-the-shelf camera analyzes soil flow beneath the wheel. The proposed model for the normal stress distribution is formulated based on these experimental data and takes into account the following phenomena for the lightweight vehicles that have not been considered in the classical model: (1) the normal stress distribution takes the form of a Gaussian curve; (2) the normal stress distribution concentrates in the front region of the wheel contact patch; (3) the distribution is divided into two areas with the boundary determined by the maximum normal stress angle; and (4) the maximum normal stress exponentially decreases as the slip ratio increases. Then, the proposed model is experimentally validated. Furthermore, a simulation study for the wheel driving characteristics using the proposed model confirms the accuracy of the proposed model.  相似文献   

17.
The morphological evolution of gravel grains under monotonic and cyclic loading, typically present in road structures, is presented. Two types of mineralogy are considered: a limestone and a sandstone. Loading in uniaxial strain conditions are applied, with a maximum mean pressure of 5 MPa and a maximum number of cycles of 250?000. Variations in grain size distribution and grain shape, measured with image analysis techniques, are discussed in detail. In the case of uniform grain size distribution, particle breakage does appear for stresses around 500 kPa for the limestone grains and 100 kPa for the sandstone grains. For well-graded materials under low cyclic pressures (<1 MPa), changes in grain size distribution can hardly be detected. To cite this article: F. Mayoraz et al., C. R. Mecanique 334 (2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号