首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mixed-metal supramolecular complexes [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 (tpy = 2,2':6',2'-terpyridine and tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were synthesized and characterized. These complexes contain ruthenium bridged by tppz to platinum centers to form stereochemically defined linear assemblies. X-ray crystallographic determinations of the two complexes confirm the identity of the metal complexes and reveal intermolecular interactions of the Pt sites in the solid state for [(tpy)Ru(tppz)PtCl](PF6)3 with a Pt...Pt distance of 3.3218(5) A. The (1)H NMR spectra show the expected splitting patterns characteristic of stereochemically defined mixed-metal systems and are assigned with the use of (1)H-(1)H COSY and NOESY. Electronic absorption spectroscopy displays intense ligand-based pi --> pi* transitions in the UV and MLCT transitions in the visible. Electrochemically [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4 display reversible Ru (II/III) couples at 1.63 and 1.83 V versus Ag/AgCl, respectively. The complexes display very low potential tppz (0/-) and tppz(-/2-) couples, relative to their monometallic synthons, [(tpy)Ru(tppz)](PF6)2 and [Ru(tppz)2](PF6)2, consistent with the bridging coordination of the tppz ligand. The Ru(dpi) --> tppz(pi*) MLCT transitions are also red-shifted relative to the monometallic synthons occurring in the visible centered at 530 and 538 nm in CH3CN for [(tpy)Ru(tppz)PtCl](PF6)3 and [ClPt(tppz)Ru(tppz)PtCl](PF6)4, respectively. The complex [(tpy)Ru(tppz)PtCl](PF6)3 displays a barely detectable emission from the Ru(dpi) --> tppz(pi*) (3)MLCT in CH 3CN solution at RT. In contrast, [ClPt(tppz)Ru(tppz)PtCl](PF6)4 displays an intense emission from the Ru(dpi) --> tppz(pi*) (3)MLCT state at RT with lambda max(em) = 754 nm and tau = 80 ns.  相似文献   

2.
Kofod P  Harris P 《Inorganic chemistry》2004,43(8):2680-2688
The (13)C chemical shifts of methylcobalt(III) compounds with saturated amine ligands in cis positions to the methyl group and a monodentate ligand, L = CN(-), NH(3), NO(2)(-), N(3)(-), H(2)O, or OH(-), in the trans position are reported. The amine ligands used, 1,2-ethanediamine (en), 1,3-propanediamine (tn), N,N'-bis(2-aminoethyl)-1,3-propanediamine (2,3,2-tet), N,N'-bis(3-aminopropyl)-1,2-ethanediamine (3,2,3-tet), and 1,4,8,11-tetraazacyclotetradecane (cyclam), all exert an apparent cis influence on the (13)C resonance signal of the coordinated methyl group. In the trans-[Co(en)(2)(CH(3))(L)](n+) series the (15)N resonance frequency of the coordinated en has also been measured. The influence of L on the en (15)N chemical shifts is reverse the influence on the methyl (13)C chemical shifts except in the case of L = NO(2)(-), which affects a further deshielding of the amine nitrogen nucleus. The methyl (1)J(CH) coupling constants in the trans-[Co(en)(2)(CH(3))(L)](n+) series range from 128.09 Hz (L = CN(-)) to 134.11 Hz (L = H(2)O). The crystal structures of trans-[Co(en)(2)(CH(3))(ClZnCl(3))], trans-[Co(3,2,3-tet)(CH(3))(N(3))]ClO(4), trans,trans-[(CH(3))(en)(2)Co(CN)Co(en)(2)(CH(3))](PF(6))(3)(CH(3)CN), and cis-[Co(en)(2)(CH(3))(NH(3))]ZnCl(4) were determined from low-temperature X-ray diffraction data.  相似文献   

3.
NH-Bridged tetradentate ligands were synthesized to achieve stable trans Ru(II) bis(polypyridyl) complexes. The polypyridyl part of the ligand was either symmetric, as in N,N-bis(1,10-phenanthroline-2-yl)amine (phen-NH-phen), or asymmetric, as in N-(1,10-phenanthroline-2-yl)-N-(6-yl-dipyridyl[2,3-a:2',3'-c]phenazine)amine (dppz-NH-phen). Protonation of phen-NH-phen with trifluoroacetic acid and the subsequent reaction with RuCl3 yield trans-[Ru(phen-NH-phen)Cl2]. The chloro ligands in this compound can easily be replaced by stronger ligands, such as CH3CN and DMSO. In this way, complexes trans-[Ru(phen-NH-phen)(CH3CN)(DMSO)](PF6)2 (1), trans-[Ru(phen-NH-phen)(DMSO)2](PF6)2 (2), and trans-[Ru(phen-NH-phen)(CH3CN)2](PF6)2 (3) were obtained. X-ray structures were determined for 1 and 3. Following a procedure similar to that used with phen-NH-phen, the complex trans-[Ru(dppz-NH-phen)(CH3CN)2](PF6)2 (4) was obtained. To our knowledge, this is the first reported trans ruthenium(II) bis(polypyridyl) complex with two different polypyridyl ligands in the equatorial plane.  相似文献   

4.
Three ruthenium sulfide clusters with labile CH3CN ligands have been photochemically synthesized. Irradiation of [(cymene)3Ru3S2](PF6)2 ([1](PF6)2) in CH3CN gives [(cymene)2(CH3CN)3Ru3S2](PF6)2 ([2](PF6)2), which has been characterized by 1H NMR spectroscopy, ESI mass spectrometry, and chemical reactivity. Treatment of [2](PF6)2 with PPh3 gives [(cymene)2(CH3CN)2(PPh3)Ru3S2](PF6)2 ([3](PF6)2) and [(cymene)2(CH3CN)(PPh3)2Ru3S2](PF6)2 ([4](PF6)2), while treatment with 1,4,7-trithiacyclononane (9S3) gives [(cymene)2(9S3)Ru3S2](PF6)2 ([5](PF6)2). A crystallographic study demonstrated that the Ru3 core in [3](PF6)2, [4](PF6)2, and [5](PF6)2 is distorted with a pair of elongated Ru-Ru bonds. Cyclic voltammetry shows that [3](PF6)2 and [4](PF6)2 undergo two closely spaced reversible one-electron reductions whereas [5](PF6)2 undergoes one irreversible one-electron reduction and one reversible one-electron reduction. Prolonged irradiation of [1](PF6)2 in CH3CN causes decomposition, resulting in the pentanuclear cluster [(cymene)4Ru5S4](PF6)2 ([6](PF6)2).  相似文献   

5.
From the reaction of Ni(COD)(2) (COD = cyclooctadiene) in dry diethylether with 2 equiv of 2-phenyl-1,4-bis(isopropyl)-1,4-diazabutadiene (L(Ox))(0) under an Ar atmosphere, dark red, diamagnetic microcrystals of [Ni(II)(L*)(2)] (1) were obtained where (L*)(1-) represents the pi radical anion of neutral (L(Ox))(0) and (L(Red))(2-) is the closed shell, doubly reduced form of (L(Ox))(0). Oxidation of 1 with 1 equiv of ferrocenium hexafluorophosphate in CH(2)Cl(2) yields a paramagnetic (S = 1/2), dark violet precipitate of [Ni(I)(L(Ox))(2)](PF(6)) (2) which represents an oxidatively induced reduction of the central nickel ion. From the same reaction but with 2 equiv of [Fc](PF(6)) in CH(2)Cl(2), light green crystals of [Ni(II)(L(Ox))(2)(FPF(5))](PF(6)) (3) (S = 1) were obtained. If the same reaction was carried out in tetrahydrofuran, crystals of [Ni(II)(L(Ox))(2)(THF)(FPF(5))](PF(6)) x THF (4) (S = 1) were obtained. Compounds 1, 2, 3, and 4 were structurally characterized by X-ray crystallography: 1 and 2 contain a tetrahedral neutral complex and a tetrahedral monocation, respectively, whereas 3 contains the five-coordinate cation [Ni(II)(L(Ox))(2)(FPF(5))](+) with a weakly coordinated PF(6)(-) anion and in 4 the six-coordinate monocation [Ni(II)(L(Ox))(2)(THF)(FPF(5))](+) is present. The electro- and magnetochemistry of 1-4 has been investigated by cyclic voltammetry and SQUID measurements. UV-vis and EPR spectroscopic data for all compounds are reported. The experimental results have been confirmed by broken symmetry DFT calculations of [Ni(II)(L*)(2)](0), [Ni(I)(L(Ox))(2)](+), and [Ni(II)(L(Ox))(2)](2+) in comparison with calculations of the corresponding Zn complexes: [Zn(II)((t)L(Ox))(2)](2+), [Zn(II)((t)L(Ox))((t)L*)](+), [Zn(II)((t)L*)(2)](0), and [Zn(II)((t)L*)((t)L(Red))](-) where ((t)L(Ox))(0) represents the neutral ligand 1,4-di-tert-butyl-1,4-diaza-1,3-butadiene and ((t)L*)(1-) and ((t)L(Red))(2-) are the corresponding one- and two-electron reduced forms. It is clearly established that the electronic structures of both paramagnetic monocations [Ni(I)(L(Ox))(2)](+) (S = 1/2) and [Zn(II)((t)L(Ox))((t)(L*)](+) (S = 1/2) are different.  相似文献   

6.
Zhou L  Nicholas KM 《Inorganic chemistry》2008,47(10):4356-4367
In the search for new bis(imidazole)thioether (BIT) copper complexes that accurately mimic the electronic and reactivity features of the CuM site of copper hydroxylase enzymes, a set of tripodal BIT ligands 4a, b- 6a, b has been synthesized that vary according to the imidazole C-(Ph or H) and N-(H or Me) substituents, as well as the position (2- or 4-) of the tripodal attachment. Corresponding [(BIT)Cu(L)](PF6) complexes 7a, b', 8a, b', and 9a', b' [L=CO (a), CH3CN (b)] have been prepared and characterized spectroscopically. The IR spectra of 7a- 9a (L=CO), specifically nu(CO), show little variation (2090-2100 cm(-1)), suggesting a similar electronic character of the Cu centers. In contrast, cyclic voltammetric analysis of these compounds (L=CH3CN) reveals quasi-reversible oxidation waves with significant variation of Epa in the range of + 0.45-0.57 V vs Fc/Fc(+), depending on the imidazole substituents. Each of the [(BIT)Cu(CH 3CN)]PF6 complexes reacts with dioxygen to form [(BIT)Cu(II) 2(mu-OH) 2](PF6)2 derivatives, 10- 12, but they vary considerably in their relative reactivity, following the same trend as the ease of their electrochemical oxidation, that is, [(2-BIT (NMe))Cu(CH 3CN)](+) ( 9b')>[(4-BIT (Ph,NMe))Cu(CH3CN)](+) ( 8b')>[(2-BIT (Ph2,NMe))Cu(CH3CN)](+) (1a')>[(4-BIT (Ph,NH))Cu(CH3CN)](+) (7b'). Thus, N-Me substitution and 4-tethering on the imidazole unit increase oxidation and oxygenation reactivity, while Ph-substitution and 2-tethering decrease reactivity. PM3 and DFT calculations are employed to analyze the relative stability, the electronic features, the Cu-CO vibrtional frequency, and the electrochemical and oxidative reactivity of the complexes.  相似文献   

7.
Tripodal bis(imidazole) thioether ligands, (N-methyl-4,5-diphenyl-2-imidazolyl)2C(OR)C(CH3)2SR' (BIT(OR,SR'); R = H, CH3; R' = CH3, C(CH3)3, C(C6H5)3), have been prepared, offering the same N2S donor atom set as the CuM binding site of the hydroxylase enzymes, dopamine beta hydroxylase and peptidylglycine hydroxylating monooxygenase. Isolable copper(I) complexes of the type [(BIT(OR,SMe))Cu(CO)]PF6 (3a and 3b) are produced in reactions of the respective tripodal ligands 1a (R = H) and 1b (R = Me) with [Cu(CH3CN)4]PF6 in CH2Cl2 under CO (1 atm); the pyramidal structure of 3a has been determined crystallographically. The infrared (IR) nu(CO)'s of 3a and 3b (L = CO) are comparable to those of the Cu(M)-carbonylated enzymes, indicating similar electronic character at the copper centers. The reaction of [(BIT(OH,SMe))Cu(CH3CN)]PF6 (2a) with dioxygen produces [(BIT(O,SOMe))2Cu2(DMF)2](PF6)2 (4), whose X-ray structure revealed the presence of bridging BIT-alkoxo ligands and terminal -SOMe groups. In contrast, oxygenation of 2b (R = Me) affords crystallographically defined [(BIT(OMe,SMe))2Cu2(mu-OH)2](OTf)2 (5), in which the copper centers are oxygenated without accompanying sulfur oxidation. Complex 5 in DMF is transformed into five-coordinate, mononuclear [CuII(BIT(OMe,SMe))(DMF)2](PF6)2 (6). The sterically hindered BIT(OR,SR') ligands 9 and 10 (R' = t-Bu; R = H, Me) and 11 and 12 (R' = CPh3; R = H, Me) were also prepared and examined for copper coordination/oxygenation. Oxygenation of copper(I) complex 13b derived from the BIT(OMe,SBu-t) ligand is slow, relative to 2b, producing a mixture of (BIT(OMe,SBu-t))2Cu2(mu-OH)2-type complexes 14b and 15b in which the -SBu-t group is uncoordinated; one of these complexes (15b) has been ortho-oxygenated on a neighboring aryl group according to the X-ray analysis and characterization of the free ligand. Oxygenation of the copper(I) complex derived from BIT(OMe,SCPh3) ligand 12 produces a novel dinuclear disulfide complex, [(BIT(OMe,S)2Cu2(mu-OH)2](PF6)2 (17), which is structurally characterized. Reactivity studies under anaerobic conditions in the presence of t-BuNC indicate that 17 is the result of copper(I)-induced detritylation followed by oxygenation of a highly reactive copper(I)-thiolate complex.  相似文献   

8.
A series of bis(alpha-iminopyridine)metal complexes featuring the first-row transition ions (Cr, Mn, Fe, Co, Ni, and Zn) is presented. It is shown that these ligands are redox noninnocent and their paramagnetic pi radical monoanionic forms can exist in coordination complexes. Based on spectroscopic and structural characterizations, the neutral complexes are best described as possessing a divalent metal center and two monoanionic pi radicals of the alpha-iminopyridine. The neutral M(L*)2 compounds undergo ligand-centered, one-electron oxidations generating a second series, [(L(x))2M(THF)][B(ArF)4] [where L(x) represents either the neutral alpha-iminopyridine (L)0 and/or its reduced pi radical anion (L*)-]. The cationic series comprise mostly mixed-valent complexes, wherein the two ligands have formally different redox states, (L)0 and (L*)-, and the two ligands may be electronically linked by the bridging metal atom. Experimentally, the cationic Fe and Co complexes exhibit Robin-Day Class III behavior (fully delocalized), whereas the cationic Zn, Cr, and Mn complexes belong to Class I (localized) as shown by X-ray crystallography and UV-vis spectroscopy. The delocalization versus localization of the ligand radical is determined only by the nature of the metal linker. The cationic nickel complex is exceptional in this series in that it does not exhibit any ligand mixed valency. Instead, its electronic structure is consistent with two neutral ligands (L)0 and a monovalent metal center or [(L)2Ni(THF)][B(ArF)4]. Finally, an unusual spin equilibrium for Fe(II), between high spin and intermediate spin (S(Fe) = 2 <--> S(Fe) = 1), is described for the complex [(L*)(L)Fe(THF)][B(ArF)4], which consequently is characterized by the overall spin equilibrium (S(tot) = 3/2 <--> S(tot) = 1/2). The two different spin states for Fe(II) have been characterized using variable temperature X-ray crystallography, EPR spectroscopy, zero-field and applied-field M?ssbauer spectroscopy, and magnetic susceptibility measurements. Complementary DFT studies of all the complexes have been performed, and the calculations support the proposed electronic structures.  相似文献   

9.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

10.
Halfen JA  Uhan JM  Fox DC  Mehn MP  Que L 《Inorganic chemistry》2000,39(21):4913-4920
As part of an ongoing effort to rationally design new copper catalysts for olefin aziridination, a family of copper(II) complexes derived from new tetradentate macrocyclic ligands are synthesized, characterized both in the solid state and in solution, and screened for catalytic nitrene transfer reactivity with a representative set of olefins. The pyridylmethyl-appended diazacycloalkane ligands L6(py)2, L7(py)2, and L8(py)2 are prepared by alkylation of the appropriate diazacycloalkane (piperazine, homopiperazine, or diazacyclooctane) with picolyl chloride in the presence of triethylamine. The ligands are metalated with Cu(ClO4)(2).6H2O to provide the complexes [(L6(py)2)Cu(OClO3)]ClO4 (1), [(L7(py)2)Cu(OClO3)]ClO4 (2), and [(L8(py)2)Cu](ClO4)2 (3), which, after metathesis with NH4PF6 in CH3CN, afford [(L6(py)2)Cu(CH3CN)](PF6)2 (4), [(L7(py)2)Cu(CH3CN)](PF6)2 (5), and [(L8(py)2)Cu](PF6)2 (6). All six complexes are characterized by X-ray crystallography, which reveals that complexes supported by L6(py)2 and L7(py)2 (1, 2, 4, 5) adopt square-pyramidal geometries, while complexes 3 and 6, ligated by L8(py)2 feature tetracoordinate, distorted-square-planar copper ions. Tetragonal geometries in solution and d(x2 - y2), ground states are confirmed for the complexes by a combination of UV-visible and EPR spectroscopies. The divergent flexibility of the three supporting ligands influences the Cu(II)/Cu(I) redox potentials within the family, such that the complexes supported by the larger ligands L7(py)2 and L8(py)2 (5 and 6) exhibit quasi-reversible electron transfer processes (E1/2 approximately -0.2 V vs Ag/AgCl), while the complex supported by L6(py)2 (4), which imposes a rigid tetragonal geometry upon the central copper(II) ion, is irreversibly reduced in CH3CN solution. Complexes 4-6 are efficient catalysts (in 5 mol % amounts) for the aziridination of styrene with the iodinane PhINTs (in 80-90% yields vs PhINTs), while only 4 exhibits significant catalytic nitrene transfer reactivity with 1-hexene and cyclooctene.  相似文献   

11.
The compounds fac-(κ(3)-PDP)Mo(CO)(3) {1; PDP = 2-[[2-(1-(pyridin-2-ylmethyl)pyrrolidin-2-yl)pyrrolidin-1-yl]methyl]pyridine}, [(cis-β-PDP)Mo(NO)(CO)]PF(6) ([cis-β-3]PF(6)), [(cis-α-PDP)Mo(NO)(CO)]PF(6) ([cis-α-3]PF(6)), [(cis-α-PDP)Mo(NO)Br]PF(6) ([4]PF(6)), [(trans-PDP)Cu](BF(4))(2)·CH(3)CN ([5](BF(4))(2)·CH(3)CN), and [(trans-PDP)Cu](OSO(2)CF(3))(2) ([5](OSO(2)CF(3))(2)) have been synthesized and structurally characterized by single-crystal X-ray diffraction. These are the first reported complexes of PDP on metal centers other than iron(II). The observed configurations indicate a broader range of accessible PDP topologies than has been reported. The {(cis-α-PDP)Mo(NO)}(+) fragment is found to be less π-basic than the dearomatizing {Tp(MeIm)Mo(NO)} fragment [Tp = hydridotris(1-pyrazolyl)borato; MeIm = 1-methylimidazole].  相似文献   

12.
Copper(I) complexes of tripodal tris(N-methyl-4,5-diphenyl-imidazolyl)methane ligands, N3CR (1a-c, R = OH, OMe, H), have been prepared as models for the Cu(A) site of copper hydroxylase enzymes. In the absence of additional donors, the ligands 1 react with [Cu(CH3CN)4]PF6 (2) to produce dinuclear complexes [(N3CR)2Cu2](PF6)2 (3) in which the tripodal ligands bridge two trigonal Cu centers; the structures of 3b and 3c are established by X-ray diffraction. Mononuclear adducts [(N3CR)CuL]Z are produced with L = acetonitrile (4), carbon monoxide (5), and t-BuNC (6, 7). The carbonyl complexes 5 are in dynamic equilibrium with the dimeric complexes 3, but 5c (R = H) can be isolated. The structures of the isocyanide derivatives depend critically on the tripod methane substituent, R. Thus, the X-ray structures of 6 (R = OMe) and 7 (R = H) show trigonal and tetrahedral geometries, respectively, with bi- or tridentate coordination of the tripod. A trinuclear complex [Cu3(N3COH)2(t-BuNC)2](PF6)3 (8) is formed from N3COH (1a) which features both three-coordinate and two-coordinate Cu atoms and bidentate tripod coordination. Reactions of dioxygen with dinuclear 3c or mononuclear [(N3CR)CuL]Z are sluggish, producing from the latter in acetone [(N3CH)CuII(L)(L')](PF6)2 (9, L = acetone, L' = H2O).  相似文献   

13.
The ligand-bridged complex cis,cis-[(bpy)2ClRu(pz)RuCl(bpy)2]2+ as the PF6- salt, (1)(PF6)2, is stabilized toward photochemical ligand loss in poly(methyl methacrylate) (PMMA). Stabilization allows measurement of metal-to-ligand charge transfer (MLCT) photophysical properties--emission and transient absorption. This includes appearance of an intervalence transfer absorption band in the near IR spectrum of the photochemically prepared, mixed valence form, [(bpy)2ClRuIII(pz(-*))RuIICl(bpy)2](PF6)2* (1*(PF6)2). Comparison of its IT band properties with those of ground state cis,cis-(bpy)2ClRuIII(pz)RuIICl(bpy)2]3+ in CD3CN allows a comparison to be made between pz and pz(-*) as bridging ligands. A model based on differences between rigid and fluid media provides an explanation for decreased IT band energies and widths in PMMA and provides important insight into electron transfer in rigid media.  相似文献   

14.
From the reaction of in situ generated 1,2-di(4-tert-butylphenyl)ethylene-1,2-dithiol, 2LH2, and Na[AuCl4].2H2O in 1,4-dioxane, green brown crystals of diamagnetic [N(n-Bu)4][AuIII(2L)2] (1) were obtained. As shown by cyclic voltammetry, 1 is a member of an electron-transfer series comprising the dianion [AuII(2L)2]2-, the monoanion [AuIII(2L)2]-, the neutral species [AuIII(2L*)(2L)]0 <--> [AuIII(2L)(2L*)]0, and the monocation [AuIII(2L*)2]+. (2L*)1- represents the pi radical anion (Srad = 1/2) of the one-electron oxidized closed-shell dianion (2L)2-. Oxidation of 1 in CH2Cl2 with ferrocenium hexafluorophosphate affords green, paramagnetic microcrystals of [AuIII(2L*)(2L)] <--> [AuIII(2L)(2L*)] (2) (S = 1/2). Complexes 1 and 2 have been characterized by X-ray crystallography. Both species possess square-planar monoanions and neutral molecules, respectively. From the oxidation reaction of 1 or [N(n-Bu)4][AuIII(3L)2] with 2-3 equiv of [NO]BF4 in CH2Cl2, a green solution of [AuIII(2L*)2]+ and green microcrystals of [AuIII(3L*)2]BF4 (3) were obtained, respectively; (3L)2- represents the dianion 1,2-di(4-diphenyl)ethylene-1,2-dithiolate, and (3L*)1- is its pi radical monoanion. The electronic structures of this series of gold species have been elucidated by UV-vis, EPR spectroscopies, and DFT calculations. It is shown computationally by density functional theoretical (DFT) methods that the electronic structure of [AuIII(1L*)2]+ is best described as a singlet diradical (St = 0); the ligand mixed valency in the neutral species 2 is of class (III) (delocalized); the monoanion in 1 contains a AuIII ion and two closed-shell dianionic ligands; and the corresponding dianions [Au(L)2]2- are best described as an intermediate AuII/AuIII species with a metal-ligand delocalized SOMO (25% Au 5d, 75% 3p of four S atoms). (1L)2- is the dianion 1,2-di(phenyl)ethylene-1,2-dithiolate, and (1L*)1- is the pi radical monoanion. The neutral species [PdII(2L*)2] (4) has also been synthesized and characterized by X-ray crystallography. Its electronic structure is the same as described for [AuIII(1L*)2]+ (singlet diradical), whereas that of the monoanion [PdII(2L*)(2L)]- <--> [Pd(2L)(2L*)]- corresponds to that of the neutral gold complex 2. Anodic oxidation of the analogous monoanion [AuIII(mnt)2]-, where mnt = maleonitriledithiolate, gave the neutral complex [Au(mnt)(mnt*)] (E1/2 = 0.91 V vs Fc+/Fc). The optical and EPR spectroscopies of [Au(mnt)(mnt*)] were consistent with those observed for the corresponding di(tert-butylphenyl)ethylenedithiolate complex 2.  相似文献   

15.
With the use of Kl?ui's tripodal ligand, [(Cp)Co(P(O)(OEt)(2))(3)](-) (L(CoEt), Cp = cyclopentadiene) as the auxiliary ligand to react with different metal salts and tricyanometalate building blocks, five neutral trimetallic hexanuclear complexes: [(Tp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·6H(2)O (1, Tp = hydridotris(pyrazolyl)borate), [(Tp*)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·2H(2)O (2, Tp* = hydridotris(3,5-dimethyl-pyrazolyl)borate), [(pzTp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·H(2)O·3MeOH (3, pzTp = tetra(pyrazolyl)borate), [(Tp)(2)Fe(2)(CN)(6)Ni(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN·2H(2)O (4) and [(Tp)(2)Fe(2)(CN)(6)Mn(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN (5), have been obtained and structurally characterized. Magnetic measurements confirm that there are ferromagnetic couplings between the cyano-bridged Fe and Cu/or Ni ions and antiferromagnetic interaction between the cyano-bridged Fe and Mn ions. Slow relaxation of the magnetization is observed in complexes 1 and 4, while complex 3 exhibits metamagnetic behavior with a critical field of 17.5 kOe.  相似文献   

16.
The reaction of 2 equiv of the bulky ligand N,N'-bis(3,5-di-tert-butylphenyl)-1,2-phenylenediamine, H2[3L(PDI)], excess triethylamine, and 1 equiv of M(CH3CO2)2.4H2O (M = Ni, Co) in the presence of air in CH3CN/CH2Cl2 solution yields violet-black crystals of [Ni(II)(3L(ISQ))2] CH3CN (1) or violet crystals of [Co(3L)2] (3). By using Pd(CH3CO2)2 as starting material, green-blue crystals of [Pd(II)(3L(ISQ))2].CH3CN (2) were obtained. Single-crystal X-ray crystallography revealed that 1 and 3 contain (pseudo)tetrahedral neutral molecules [M(3L)2] (M = Ni, Co) whereas in 2 nearly square planar, neutral molecules [Pd(II)(3L(ISQ))2] are present. Temperature-dependent susceptibility measurements established that 1 and 2 are diamagnetic (S = 0) whereas 3 is paramagnetic with an S = 3/2 ground state. It is shown that 1 contains two pi radical benzosemiquinonate(1-)-type monoanions, ((3L(ISQ))(1-*), S(rad) = 1/2), and a central Ni(II) ion (d8; S = 1) which are antiferromagnetically coupled yielding the observed S(t) = 0 ground state. This result has been confirmed by broken symmetry DFT calculations of 1. In contrast, the S(t) = 3/2 ground state of 3 is more difficult to understand: the two resonance structures [Co(III)(3L(ISQ))(3L(PDI))] <--> [Co(II)(3L(PDI))(3L(IBQ))] might be invoked (for tetrahedral [Co(II)(3L(ISQ))2] containing an S(Co) = 3/2 with two antiferromagnetically coupled pi-radical ligands an S(t) = 1/2 is anticipated). Complex 2 is diamagnetic (S = 0) containing a Pd(II) ion (d8, S(Pd) = 0 in an almost square planar ligand field) and two antiferromagnetically coupled ligand radicals (S(rad) = 1/2). The electrochemistry and spectroelectrochemistry of 1, 2, and 3 have been studied, and electron-transfer series comprising the species [M(L)2]z (z = 2+, 1+, 0, 1-, 2-) have been established. All oxidations and reductions are ligand centered.  相似文献   

17.
The alpha-C-H bonds of 3-methyl-2-butanone, 3-pentanone, and 2-methyl-3-pentanone were activated on the sulfur center of the disulfide-bridged ruthenium dinuclear complex [(RuCl(P(OCH3)3)2)2(mu-S2)(mu-Cl)2] (1) in the presence of AgX (X = PF6, SbF6) with concomitant formation of C-S bonds to give the corresponding ketonated complexes [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHR1COR2)(Ru(CH3CN)3(P(OCH3)3)2)]X3 ([5](PF6)3, R1 = H, R2 = CH(CH3)2, X = PF6; [6](PF6)3, R1 = CH3, R2 = CH2CH3, X = PF6; [7](SbF6)3, R1 = CH3, R2 = CH(CH3)2, X = SbF6). For unsymmetric ketones, the primary or the secondary carbon of the alpha-C-H bond, rather than the tertiary carbon, is preferentially bound to one of the two bridging sulfur atoms. The alpha-C-H bond of the cyclic ketone cyclohexanone was cleaved to give the complex [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SS-1- cyclohexanon-2-yl)(Ru(CH3CN)3(P(OCH3)3)2)](SbF6)3 ([8](SbF6)3). And the reactions of acetophenone and p-methoxyacetophenone, respectively, with the chloride-free complex [(Ru(CH3CN)3(P(OCH3)3)2)2(mu-S2)]4+ (3) gave [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCH2COAr)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([9](CF3SO3)3, Ar = Ph; [10](CF3SO3)3, Ar = p-CH3OC6H4). The relative reactivities of a primary and a secondary C-H bond were clearly observed in the reaction of butanone with complex 3, which gave a mixture of two complexes, i.e., [(Ru(CH3CN)2(P(OCH3)3)20(mu-SSCH2COCH2CH3)(Ru(CH3CN)3(P(OCH3)3)2)](CF3SO3)3 ([11](CF3SO3)3) and [(Ru(CH3CN)2(P(OCH3)3)2)(mu-SSCHCH3COCH3)(Ru(CH3CN)3(P(OCH3)2)](CF3SO3)3 ([12](CF3SO3)3), in a molar ratio of 1:1.8. Complex 12 was converted to 11 at room temperature if the reaction time was prolonged. The relative reactivities of the alpha-C-H bonds of the ketones were deduced to be in the order 2 degrees > 1 degree > 3 degrees, on the basis of the consideration of contributions from both electronic and steric effects. Additionally, the C-S bonds in the ketonated complexes were found to be cleaved easily by protonation at room temperature. The mechanism for the formation of the ketonated disulfide-bridged ruthenium dinuclear complexes is as follows: initial coordination of the oxygen atom of the carbonyl group to the ruthenium center, followed by addition of an alpha-C-H bond to the disulfide bridging ligand, having S=S double-bond character, to form a C-S-S-H moiety, and finally completion of the reaction by deprotonation of the S-H bond.  相似文献   

18.
Tripodal bis(imidazole) thioether ligands and the corresponding copper(I) complexes [(BIMT-OR)Cu(L)]PF6 [L = CH3CN (2), CO (3); R = H (a), CH3 (b)] have been prepared as models for the Cu(B) site of copper hydroxylase enzymes. The IR (CO) values of 3a and 3b (L = CO) are comparable to those of the carbonylated enzymes. The reaction of 2a with O2 gives dinuclear complex 4 with bridging BIMT-O ligands and oxidized -SMe groups, whereas oxygenation of 2b affords [(BIMT-OMe)2Cu2O(H)2](CF3SO3)2 (5) and Cu(BIMT-OMe)(DMF)2](PF6)2 (6).  相似文献   

19.
The electronic structures of chromium and vanadium centers coordinated by three reduced 1,2-diketones have been elucidated by using density functional theory (DFT) calculations and a host of physical methods: X-ray crystallography; cyclic voltammetry; ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopy; and magnetic susceptibility measurements. The metal center in octahedral [CrIII(L*)3]0 (1), a CrIII (d3) ion is coupled antiferromagnetically to three monoanionic ligand pi-radicals affording an S ) 0 ground state. In contrast, Na2(Et2O)2[VIV(LRed)3] (2) (S ) 1/2), possesses a central VIV (d1) ion O,OE-coordinated to three closed-shell, doubly reduced ligands which in turn are coordinated by two Na cations enforcing a trigonal prismatic geometry at the vanadium center. 2 can be oxidized electrochemically by one and two electrons generating a monoanion, [V(L)3]1-, and a neutral species, [V(L)3]0, respectively. DFT calculations atthe B3LYP level show that the one-electron oxidized product contains an octahedral VIV ion coupled antiferromagnetically to one monoanionic ligand pi-radical [VIV(L*)(LRed)2]1- (S ) 0). In contrast, the two-electron oxidized product contains a VIII ion coupled antiferromagnetically to three ligand pi-radicals in an octahedral field[VIII(L*)3]0 (S ) 1/2).  相似文献   

20.
The structure and electrochemical properties of a series of bis(imino)pyridine Co(II) complexes (NNN)CoX(2) and [(NNN)(2)Co][PF(6)](2) (NNN = 2,6-bis[1-(4-R-phenylimino)ethyl]pyridine, with R = CN, CF(3), H, CH(3), OCH(3), N(CH(3))(2); NNN = 2,6-bis[1-(2,6-(iPr)(2)-phenylimino)ethyl]pyridine and X = Cl, Br) were studied using a combination of electrochemical and theoretical methods. Cyclic voltammetry measurements and DFT/B3LYP calculations suggest that in solution (NNN)CoCl(2) complexes exist in equilibrium with disproportionation products [(NNN)(2)Co](2+) [CoCl(4)](2-) with the position of the equilibrium heavily influenced by both the solvent polarity and the steric and electronic properties of the bis(imino)pyridine ligands. In strong polar solvents (e.g., CH(3)CN or H(2)O) or with electron donating substituents (R = OCH(3) or N(CH(3))(2)) the equilibrium is shifted and only oxidation of the charged products [(NNN)(2)Co](2+) and [CoCl(4)](2-) is observed. Conversely, in nonpolar organic solvents such as CH(2)Cl(2) or with electron withdrawing substituents (R = CN or CF(3)), disproportionation is suppressed and oxidation of the (NNN)CoCl(2) complexes leads to 18e(-) Co(III) complexes stabilized by coordination of a solvent moiety. In addition, the [(NNN)(2)Co][PF(6)](2) complexes exhibit reversible Co(II/III) oxidation potentials that are strongly dependent on the electron withdrawing/donating nature of the N-aryl substituents, spanning nearly 750 mV in acetonitrile. The resulting insight on the regulation of redox properties of a series of bis(imino)pyridine cobalt(II) complexes should be particularly valuable to tune suitable conditions for reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号