首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MPW1K density functional calculations, carried out with the 6-31+G(d,p) basis set, have been combined with canonical variational transition state theory (CVT) and small-curvature tunneling (SCT) corrections in order to compute the primary kinetic isotope effects for rearrangement of 5-methyl-1,3-cyclopentadiene (1) to 1-methyl-1,3-cyclopentadiene (2). The Swain-Schaad exponents, SSE = ln(kH/kT)/ln(kD/kT), for this reaction have been computed over the temperature range 100-600 K. Tunneling results in both large positive and large negative deviations from the value of SSE = 3.26, expected from consideration of only the effect of the isotopic mass on passage over the reaction barrier. In the rearrangement of 1 to 2, SSE approximately 3.26, not only at temperatures >400 K, where tunneling is relatively unimportant, but also around 170 K, where tunneling by both H and D is the dominant mode of reaction. Thus, from an experimental finding that SSE approximately 3.26 at a single temperature, it cannot be rigorously concluded that tunneling is unimportant. Measurement of SSEs over a broad temperature range is advisable; but measurement of the temperature dependence of just kH/kD can be used to establish more unequivocally whether tunneling is important, without the necessity of measuring kT.  相似文献   

2.
In situ neutron inelastic scattering experiments on hydrogen adsorbed into a fully deutrated tetrahydrofuran-water ice clathrate show that the adsorbed hydrogen has three rotational excitations (transitions between J=0 and 1 states) at approximately 14 meV in both energy gain and loss. These transitions could be unequivocally assigned since there was residual orthohydrogen at low temperatures (slow conversion to the ground state) resulting in an observable J=1-->0 transition at 5 K (kT=0.48 meV). A doublet in neutron energy loss at approximately 28.5 meV is interpreted as J=1-->2 transitions. In addition to the transitions between rotational states, there are a series of peaks that arise from transitions between center-of-mass translational quantum states of the confined hydrogen molecule. A band at approximately 9 meV can be unequivocally interpreted as a transition between translational states, while broad features at 20, 25, 35, and 50-60 meV are also interpreted to as transitions between translational quantum states. A detailed comparison is made with a recent five-dimensional quantum treatment of hydrogen in the smaller dodecahedral cage in the SII ice-clathrate structure. Although there is broad agreement regarding the features such as the splitting of the J=1 degeneracy, the magnitude of the external potential is overestimated. The numerous transitions between translational states predicted by this model are in poor agreement with the experimental data. Comparisons are also made with three simple exactly solved models, namely, a particle in a box, a particle in a sphere, and a particle on the surface of a sphere. Again, there are too many predicted features by the first two models, but there is reasonable agreement with the particle on a sphere model. This is consistent with published quantum chemistry results for hydrogen in the dodecahedral 5(12) cage, where the center of the cage is found to be energetically unfavorable, resulting in a shell-like confinement for the hydrogen molecule wave function. These results demonstrate that translational quantum effects are very significant and a classical treatment of the hydrogen molecule dynamics is inappropriate under such conditions.  相似文献   

3.
The D/H ratios of hydrogen gas in equilibrium with aqueous sodium chloride solutions of 2, 4 and 6 molalities were determined within the range 10 to 95°C, using a hydrophobic platinum catalyst. With each of the different sodium chloride concentrations, the hydrogen isotope effect between the solution and pure water changes linearly with the square of the reciprocal temperature. On the basis of the results for hydrogen isotope fractionation observed in this study, and those of hydrogen isotope fractionation between pure water and vapor, it is concluded that the structure of the aqueous sodium chloride solution does not change significantly with temperature. The hydrogen isotope effect is evidently different from the results of vapor pressure isotope effects (VPIE) on sodium chloride solutions measured on separated isotopes. The difference between the present work and the VPIE studies is probably due to a non-ideal behavior in a mixture of isotopic water molecules and/or to a H2O-D2O disproportionation reaction in sodium chloride solutions. The distinction between the latter two mechanisms can not be differentiated at present.  相似文献   

4.
Recent experimental evidence has pointed to the possible presence of a short, strong hydrogen bond in the enzyme-substrate transition states in some biochemical reactions. To date, most experimental measures of these short, strong hydrogen bonds have monitored their equilibrium properties. In this work we show that kinetic measurements can also be used to detect the presence of short, strong hydrogen bonds. In particular, we find nontrivial differences among rate constant ratios of protonated to deuterated hydrogen bonds between strong and weak hydrogen bonds for proton transfer between donor-acceptor sites. We quantify this kinetic isotope effect by performing dynamical calculations of these rate constants by computing reactive flux through a dividing surface. This reactive flux is computed by evolving trajectories on an effective quantum mechanical potential energy surface.  相似文献   

5.
The reaction of triplet methylene with methanol is a key process in alcohol combustion but surprisingly this reaction has never been studied. The reaction mechanism is investigated by using various high-level ab initio methods, including the complete basis set extrapolation (CBS-QB3 and CBS-APNO), the latest Gaussian-n composite method (G4), and the Weizmann-1 method (W1U). A total of five product channels and six transition states are found. The dominant mechanism is direct hydrogen abstraction, and the major product channel is CH(3) + CH(3)O, involving a weak prereactive complex and a 7.4 kcal/mol barrier. The other hydrogen abstraction channel, CH(3) + CH(2)OH, is less important even though it is more exothermic and involves a similar barrier height. The rate coefficients are predicted in the temperature range 200-3000 K. The tunneling effect and the hindered internal rotational freedoms play a key role in the reaction. Moreover, the reaction shows significant kinetic isotope effect.  相似文献   

6.
Layer-wise, distance-dependent orientational relaxation of water confined in reverse micelles (RM) is studied using theoretical and computational tools. We use both a newly constructed "spins on a ring" (SOR) Ising-type model (with Shore-Zwanzig rotational dynamics) and atomistic simulations with explicit water. Our study explores the effect of reverse micelle size and role of intermolecular correlations, compromised by the presence of a highly polar surface, on the distance (from the interface) dependence of water relaxation. The "spins on a ring" model can capture some aspects of distance dependence of relaxation, such as acceleration of orientational relaxation at intermediate layers. In atomistic simulations, layer-wise decomposition of hydrogen bond formation pattern clearly reveals that hydrogen bond arrangement of water at a certain distance away from the surface can remain frustrated due to the interaction with the polar surface head groups. This layer-wise analysis also reveals the presence of a non-monotonic slow relaxation component which can be attributed to this frustration effect and which is accentuated in small to intermediate size RMs. For large size RMs, the long time component decreases monotonically from the interface to the interior of the RMs with slowest relaxation observed at the interface.  相似文献   

7.
The effect of hydrogen bonds on the fate of nucleophilic aromatic substitutions (S(N)Ar) has been studied in silico using a density functional theory approach in the condensed phase. The importance of these hydrogen bonds can explain the "built-in solvation" model of Bunnett concerning intermolecular processes between halogenonitrobenzenes and amines. It is also demonstrated that it can explain experimental results for a multicomponent reaction (the Ugi-Smiles coupling), involving an intramolecular S(N)Ar (the Smiles rearrangement) as the key step of the process. Modeling reveals that when an intramolecular hydrogen bond is present, it lowers the activation barrier of this step and enables the multicomponent reaction to proceed.  相似文献   

8.
Aggregation and gelation kinetics of fumed silica were investigated by altering the solvent-surface interactions. Native and surface-modified (hydrophobic) fumed silica particles were dispersed in short-chain linear alcohols. Based on the kinetics of aggregation and gelation, we show that the solvent-surface interactions have a tremendous impact on the bulk suspension properties. The gelation kinetics were qualitatively similar in all of the fumed silica-alcohol samples, and the gel times for all the alcohols were captured on a master curve requiring two parameters. The two parameters, the stability ratio and critical volume fraction, describe the two regimes of gelation. At low concentrations, gelation occurs due to aggregation of the particles diffusing over a potential barrier (15-25 kT). The rate of aggregation and time to gelation then scales with the stability ratio. At high particle loadings, gelation occurs at a critical volume fraction due to localization in a secondary minimum with a depth of 3-4 kT. These observations are supported by evidence of hydrogen bonding between the solvent and the particle, creating oscillatory solvation forces that govern the magnitude of these two parameters.  相似文献   

9.
The hydrogen transfer reaction in the reaction of HOSO + NO2 with and without H2O have been investigated using multicomponent quantum-mechanics method, which can directly take nuclear quantum effect (NQE) of light nuclei into account. For the case of the reaction without H2O, our calculation reveals that the reaction leading to trans-HONO is preferred. For the reaction with H2O, water-non-mediated and water-mediated (hydrogen-relay) hydrogen transfer mechanism are investigated. The NQE of hydrogen nucleus lowers the relative energy of the stationary point structures and reduces the activation barrier of the reactions. The largest stabilization is found in the transition state structure of the hydrogen-relay type reaction. H/D isotope effects for the reactions are also analyzed. In particular, H/D isotope effect on the activation barrier is analyzed in detail with the aid of the active strain model.  相似文献   

10.
The kinetics of aggregation and gelation of fumed silica suspended in ethanol were investigated as a function of volume fraction. At low particle concentrations, gelation is well described by aggregation into a primary minimum arising from hydrogen bonding and dispersion forces. The gelation is extremely slow due to an energetic barrier (approximately 25 kT) in the interparticle potential associated with solvation forces. The solvation forces also contribute to the formation of a secondary minimum in the interparticle potential. The depth of this minimum (approximately 3 kT) is sufficient that, at a critical particle concentration, long-range diffusion is arrested due to the short-range attractions and the cooperative nature of particle interactions, as described by mode coupling theory. The presence of the secondary minimum is also observed in the microstructure of the gels studied using X-ray scattering. These observations reinforce the importance of understanding the role of solvent-particle interactions in manipulating suspension properties.  相似文献   

11.
The geometric isotope effect (GIE) of sp- (acetylene-water), sp(2)- (ethylene-water), and sp(3)- (methane-water) hybridized intermolecular C-H...O and C-D...O hydrogen bonds has been analyzed at the HF/6-31++G level by using the multicomponent molecular orbital method, which directly takes account of the quantum effect of proton/deuteron. In the acetylene-water case, the elongation of C-H length due to the formation of the hydrogen bond is found to be greater than that of C-D. In contrast to sp-type, the contraction of C-H length in methane-water is smaller than that of C-D. After the formation of hydrogen bonds, the C-H length itself in all complexes is longer than C-D and the H...O distance is shorter than D...O, similar to the GIE of conventional hydrogen bonds. Furthermore, the exponent (alpha) value is decreased with the formation of the hydrogen bond, which indicates the stabilization of intermolecular C-H...O hydrogen bonds as well as conventional hydrogen bonds. In addition, the geometric difference induced by the H/D isotope effect of the intramolecular C-H...O hydrogen bond shows the same tendency as that of intermolecular C-H...O. Our study clearly demonstrates that C-H...O hydrogen bonds can be categorized as typical hydrogen bonds from the viewpoint of GIE, irrespective of the hybridizing state of carbon and inter- or intramolecular hydrogen bond.  相似文献   

12.
Wright S  Skelly JF  Hodgson A 《Faraday discussions》2000,(117):133-46; discussion 161-89
The recombination of surface and subsurface D atoms on Ni(111) has been studied using resonance-enhanced multiphoton ionisation (REMPI) to measure the internal state and translational energy distributions of the desorbing product. By detecting D2 formed during temperature-programmed desorption we were able to examine the reaction between subsurface and surface D atoms, and the recombination of two D atoms chemisorbed on the surface. Translational energy distributions for D2 formed by recombination of surface D are very sensitive to coverage. Desorption from a low coverage surface produced a translational energy release of 2.6 kT, but a thermal rotational distribution, reflecting an entrance channel barrier to dissociative chemisorption on the clean Ni(111) surface. Sticking probabilities predicted from detailed balance are consistent with molecular beam adsorption measurements. Desorption from D coverages above 0.5 ML resulted in a sub-thermal energy release, desorption being mediated by a molecular precursor state with D2 dissociation occurring via a non-activated, trapping-dissociation channel. In contrast, the reaction of subsurface D produces translationally hot D2, with a mean energy approaching 8 kTs at 180 K. This is consistent with the energetics for direct recombination of a chemisorbed D atom with a metastable subsurface D atom, which overcomes an activation barrier to resurface of between 0.35 and 0.47 eV depending on D concentration. The energy release decreases at higher temperature, probably as a result of a reduction in the energy of resurfacing D as the subsurface D concentration drops. This low energy component is attributed to accommodation of resurfacing D which is unable to react directly, followed by slow thermal desorption via the high coverage, surface D recombination channel. No internal rotational or vibration excitation was found in D2 formed by reaction of subsurface D.  相似文献   

13.
Measurements of hydrogen isotope exchange of toluene-α-d and -α-t in aqueous sodium hydroxide are reported for temperatures of 150–200°C. The reaction shows essentially no primary isotope effect. The rate extrapolated to 24°C is combined with the rate constant for reaction of benzyl anion with water obtained earlier by Bockrath and Dorfman8 to derive the aqueous pka, of toluene as 39.6 (per hydrogen basis).  相似文献   

14.
In order to reveal the effect of tritium (3H or T) on hydrogen isotope exchange, the exchange reaction between a certain compound (solid or liquid) and a tritiated one (gas or solid) was observed in gas-solid or liquid-solid systems. The reaction was analyzed using the data obtained and theA-McKay plot method, and it has been quantitatively clarified that the effect of T on the reactivity of a material is changed with (1) the degree of polymerization of the material, (2) the kind of functional groups in the material, and (3) the reaction system.  相似文献   

15.
Hydrogen is involved in a variety of chemical processes on surfaces. While hydrogen exhibits vibrational and rotational dynamics in its adsorption state, it in some cases undergoes diffusion into the substrate as well as on the surface, and participates in chemical reactions. Furthermore, hydrogen exchanges an electron with surfaces having a significant effect on the surface electronic structure. In this personal account, we review our recent studies on surface nuclear dynamics of hydrogen, hydrogen transport across surfaces, catalytic hydrogenation/isotope exchange reactions, and charge transfer between the surface and hydrogen by using a depth‐resolved technique of nuclear reaction analysis and a quantum‐state‐selective detection of resonance enhanced multiphoton ionization in combination with surface science techniques. As a future prospect, we refer to ultraslow μ spin rotation spectroscopy for a direct probe of the hydrogen charge state at surfaces.  相似文献   

16.
The possibilities of hydrogen atom tunneling transfer in biological liquids are discussed. Basic mechanisms of temperature and pressure effects on the tunneling rate constant are considered: the reorganization of reagents and the medium due to the transfer of H atoms and changes in the value and shape of the chemical reaction potential barrier upon intermolecular and soft intramolecular vibrations. Expressions are derived for the tunneling transition rate constant and kinetic isotopic effect as functions of temperature and pressure. It is found that the temperature dependence of the isotope effect is mainly affected by the second mechanism only. The theory is compared with the literature??s experimental data on the temperature dependence of the isotope effect. It is shown that experiments are described well by the theory at sensible values of the fitting parameters.  相似文献   

17.
Solubilities of deuterium gas in water were measured at 5° intervals from 278 to 303°K with an overall precision of about 0.4%. Thermodynamic functions for the solution process were calculated for deuterium gas and compared with the corresponding quantities for hydrogen gas based on the reported data of Crozier and Yamamoto. Henry's law constantsk, obtained at different temperaturesT, were fitted to an equation of the form $$R ln ({1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}) = A + {B \mathord{\left/ {\vphantom {B {T + }}} \right. \kern-\nulldelimiterspace} {T + }}C ln T + DT$$ Isotope fractionation factors α for the D2/H2 system were obtained with careful error estimates. Compared at the same temperature, D2 gas is more soluble in water than H2 gas, showing a “normal” isotope effect, and the value of α decreases from 1.086 (±0.005) at 278°K to 1.065 (±0.006) at 303°K. The large isotope effect may be attributed, at least partly, to the difference in the zero-point energies between H2 and D2 molecules when they execute oscillatory motion in a solvent cage.  相似文献   

18.
We report a detailed three-dimensional time-dependent quantum dynamics study of the state-to-state N+N(2) exchange scattering in the 2.1-3.2 eV range using a recently developed ab initio potential energy surface (PES). The reactive flux arrives at the dividing surface in the asymptotic product region in a series of six packets, instead of a single packet. Further study shows that these features arise from the "Lake Eyring" region of the PES, a region with a shallow well between two transition states. Trappings due to Feshbach resonances are found to be the major cause of the time delay. A detailed analysis of the Feshbach resonance features is carried out using an L(2) calculation of the metastable states in the "Lake Eyring" region. Strong resonance features are found in the state-to-state and initial state selected reaction probabilities. The metastable states with bending motions and/or bending coupled with stretching motions are found to be the predominant source of the resonance structure. Initial state selected reaction probabilities further indicate that the lifetimes of the metastable states with bending motions in the "Lake Eyring" region are longer than those of states with stretching motions and thus dominate the reactive resonances. Resonance structures are also visible in some of the integral cross sections and should provide a means for future experimental observation of the resonance behavior. A study of the final rotational distributions shows that, for the energy range studied here, the final products are distributed toward high-rotational states. Final vibrational distributions at the temperatures 2000 and 10,000 K are also reported.  相似文献   

19.
We have determined the isotope effects of (17)O and (18)O substitution of (16)O in H(2)O on molecular diffusivities of water vapor in air by the use of evaporation experiments. The derived diffusion fractionation coefficients (17)alpha(diff) and (18)alpha(diff) are 1.0146 +/- 0.0002 and 1.0283 +/- 0.0003, respectively. We also determined, for the first time, the ratio ln((17)alpha(diff))/ln((18)alpha(diff)) as 0.5185 +/- 0.0002. This ratio, which is in excellent agreement with the theoretical value of 0.5184, is significantly smaller than the ratio in vapor-liquid equilibrium (0.529). We show how this new experimental information gives rise to (17)O excess in meteoric water, and how it can be applied in isotope hydrology.  相似文献   

20.
The interaction of molecular hydrogen with platinum clusters of different size has been modeled by the density functional theory method within the generalized gradient approximation (GGA). The cluster size turns out to have little effect on the interaction energy, whereas the effect of the cluster structure is rather significant. The most efficient interaction with hydrogen is observed for clusters with a structure resembling the crystal structure of platinum metal. In such clusters, the hydrogen molecule is attached to its surface without a barrier. Configurations with the bidentate hydrogen coordination are the most stable ones. The H atoms can migrate over the cluster surface, overcoming moderate potential barriers of ∼0.3–0.4 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号