首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The effect of high pressure on electron transport and on the field dependence of the transverse magnetoresistance has been studied in a hybrid nanocomposite based on the Zn0.1Cd0.9GeAs2 matrix and MnAs clusters. A record high negative magnetoresistance of ~74% is formed near a pressure-induced structural transition (P≈ 3.5 GPa). The considered scattering mechanisms include both the contribution from MnAs clusters at relatively low pressures (up to 0.7 GPa) and spin-dependent scattering by localized magnetic moments in the Mn-substituted structure of the matrix in the region of the structural transition. The presence of the positive magnetoresistance region associated with the two-band transport model in the high-pressure phase, as well as the large negative magnetoresistance, is described in the framework of the semiempirical Khosla–Fischer expression.  相似文献   

2.
研究了典型的层状钙钛矿结构超导单晶Sr2RuO4在c方向的磁阻(Δρ/ρ0)(H∥ab,J∥c)的变化.实验发现,磁阻表现出强烈的各向异性,并且随着温度T的降低,磁阻效应越明显;当在平面ab内旋转磁场H的方向时,磁阻成周期性变化;实验表明,磁场沿(110)方向时,出现磁阻的极大值.分别从Sr2RuO4的费米面的各向异性、载流子散射率、c方向能带色散的各向异性等方面来解释这些输运性质. 关键词: 2RuO4')" href="#">Sr2RuO4 磁阻  相似文献   

3.
Pei-Sen Li 《中国物理 B》2022,31(3):38502-038502
For convenient and efficient verification of the magnetoresistance effect in graphene spintronic devices, vertical magnetic junctions with monolayer graphene sandwiched between two NiFe electrodes are fabricated by a relatively simple way of transferring CVD graphene onto the bottom ferromagnetic stripes. The anisotropic magnetoresistance contribution is excluded by the experimental result of magnetoresistance (MR) ratio dependence on the magnetic field direction. The spin-dependent transport measurement reveals two distinct resistance states switching under an in-plane sweeping magnetic field. A magnetoresistance ratio of about 0.17 % is obtained at room temperature and it shows a typical monotonic downward trend with the bias current increasing. This bias dependence of MR further verifies that the spin transport signal in our device is not from the anisotropic magnetoresistance. Meanwhile, the IV curve is found to manifest a linear behavior, which demonstrates the Ohmic contacts at the interface and the metallic transport characteristic of vertical graphene junction.  相似文献   

4.
A model for magnetoresistance in positionally disordered organic materials is presented and solved using percolation theory. The model describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Faster spin-flip transitions open up "spin-blocked" pathways to become viable conduction channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with previous measurements, including the sensitive dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory.  相似文献   

5.
Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+6 film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: Prom the junction annealed-in-air to the junction annealedin-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to N~0. A possible mechanism accounting for this phenomenon is discussed.  相似文献   

6.
The electronic and magnetic properties of SrFeO(3-delta) single crystals with controlled oxygen content (0< or =delta< or =0.19) have been studied systematically by susceptibility, transport, and spectroscopic techniques. An intimate correlation between the spin-charge ordering and the electronic transport behavior is found. Giant negative as well as positive magnetoresistance are observed.  相似文献   

7.
The magnetoresistance effect of a p–n junction under an electric field which is introduced by the gate voltage at room temperature is investigated by simulation. As auxiliary models, the Lombardi CVT model and carrier generationrecombination model are introduced into a drift-diffusion transport model and carrier continuity equations. All the equations are discretized by the finite-difference method and the box integration method and then solved by Newton iteration.Taking advantage of those models and methods, an abrupt junction with uniform doping is studied systematically, and the magnetoresistance as a function of doping concentration, SiO_2 thickness and geometrical size is also investigated. The simulation results show that the magnetoresistance(MR) can be controlled substantially by the gate and is dependent on the polarity of the magnetic field.  相似文献   

8.
We experimentally studied the transport properties and magnetoresistance behavior of a La0.7Ce0.3MnO3/SrTiO3 (doped by 1 wt% Nb) junction. Based on the analyses of the current-voltage relations and the depletion width, we conclude that the dominant transport mechanism of the junction is tunneling. The magnetoresistance of the junction is negative throughout the whole bias voltage range (from −1 V to 0.4 V) and the whole temperature range (below 300 K). It is believed that the magnetic field depresses the junction resistance by reducing the depletion width of the junction.  相似文献   

9.
Electron transport in amorphous silicon dioxide films with embedded nanoparticles (Co, Nb, Ta) was studied. The mean number of localized states in the interparticle tunneling channel was derived from the temperature dependence of conductivity for various grain concentrations under the assumption of the electron transport being governed by resonance tunneling in a chain of localized states between grains. To confirm the assumption of the inelastic character of tunneling, the dependences of the magnetoresistance on grain concentration, temperature, and magnetic field were studied. Accepting the single-orbital model, where the intergrain tunneling magnetoresistance is determined by s-s tunneling, it was found that the existence of weakly split localized states in the tunneling channel results in a lack of magnetoresistance saturation in strong magnetic fields. The combined effect of a decrease in the s-s tunneling coefficient and of growth in the probability of inelastic electron spin scattering with increasing length of the chain of localized states between particles in which the electron is tunneling accounts for the characteristic temperature-concentration dependences of the magnetoresistance. The experimental observation of these features provides an argument for the electron transport in a-SiO2(Co,Nb,Ta) structures being governed by inelastic resonance tunneling through intergrain localized states.  相似文献   

10.
Nanocomposite materials, consisting of ensembles of Ag and Co nanoparticles, have been successfully fabricated, with various compositions and packing densities. The transport and magnetic characteristics of the compounds were studied. In particular, a crossover from a positive magnetoresistance (MR) at low applied magnetic fields to a negative magnetoresistance at high applied magnetic fields was observed. The behaviors could be understood by the spin-dependent tunneling mechanism, known as tunneling magnetoresistance.  相似文献   

11.
The hysteretic behavior of the magnetoresistance R(H) of granular high-temperature superconductors (HTSCs) of the Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O, and La-Sr-Cu-O classical systems is investigated for transport current densities lower and higher than the critical density (at H = 0). All systems exhibit universal behavior of the width of the magnetoresistance hysteresis loop: independence of transport current under identical external conditions. This means that flux trapping in HTSC grains is the main mechanism controlling the hysteretic behavior of the magnetoresistance of granular HTSCs, while pinning of Josephson vortices in the intragranular medium makes no appreciable contribution to the formation of magnetoresistance hysteresis (when transport current flows through the sample). Experimental data on relaxation of residual resistance after the action of a magnetic field also confirm this conclusion.  相似文献   

12.
Electron transport has been studied in the gallium arsenide/granulated SiO2 film heterostructure with Co nanoparticles and in the gallium arsenide/TiO2 film heterostructure with Co island sublayers. When electrons are injected from a film into a semiconductor, a new phenomenon is observed, which is called injection magnetoresistance. For the SiO2(Co)/GaAs structure with 60 at. % Co in a magnetic field of 23 kOe at a voltage of 50 V, the injection magnetoresistance reaches 5200% at room temperature.  相似文献   

13.
The transport properties of CdTeBi superlattice have been measured as a function of the modulation wavelength. A logarithmic dependence with temperature was observed for the resistance at low temperature. The resistivity varied from 0.1 to 3.9 mΩcm at 1.7 K as the modulation wavelength varied from 177 to 81 A. A logarithmic behavior with H was observed for the transverse (longitudinal) magnetoresistance for low (high) fields. Samples were studied at temperatures down to 1.7 K and in magnetic fields up to 5 Tesla. No negative magnetoresistance as predicted by weak localization theory was observed. Hall coefficient measurements showed a logarithmic dependence with temperature which is indicative of Coulomb correlation effects (interaction theory). All measurements indicate that the transport behavior of CdTeBi superlattices is dominated by spin-orbit and/or interaction effects while weak localization plays a minimal role.  相似文献   

14.
The electrical properties of and the magnetoresistive effect in RCu3Mn4O12 (R=rare-earth ion or Th) are studied. In all compounds of this series, the magnetoresistive effect amounts to 20% at liquid nitrogen temperature in the presence of a field of 0.9 T. An increase in the magnetoresistance with decreasing temperature and a high sensitivity to weak magnetic fields at low temperatures point to the intergranular nature of the effect. The magnetoresistance shows a peak in the vicinity of the Curie temperature TC. Based on the dependences of the magnetoresistance on an external magnetic field, it is assumed that the magnetoresistance peak near TC is related to the charge carrier scattering by magnetic inhomogeneities as in substituted orthomanganites. We believe that the magnetoresistance value near the magnetic ordering temperature depends on the synthesis conditions and the effect of the intergranular spacer on the transport properties of these compounds.  相似文献   

15.
The distribution of the Hall voltage induced by low-frequency AC current is studied theoretically in the incoherent linear transport of quantum Hall systems. It is shown that the Hall-voltage distribution makes a crossover from the uniform distribution to a concentrated-near-edges distribution as the frequency is increased or the diagonal conductivity is decreased. This crossover is also reflected in the frequency dependence of AC magnetoresistance.  相似文献   

16.
Based on the nearly-free-electron approximation, the bias dependencies of electron transport properties of ferromagnet/ferromagnetic insulator (semiconductor)/ferromagnet junctions have been studied. Resonances appear in electron transmission probability. These resonances cause oscillations in the zero-temperature tunnel current and the resonances occur in tunnel conductance. Tunnel magnetoresistance (TMR) is an oscillatory function of bias. The TMR can reach a value as high as 100%. The bins dependencies of electron transport properties relate to the magnetic configurations of the junctions.  相似文献   

17.
介绍磁性多层膜中自旋极化输运和巨磁电阻效应,简述自旋阀巨磁电阻与多层膜巨磁电阻在材料组成结构和工作原理方面的区别,利用和改造现有的高校物理实验室中的实验仪器并设计简易的实验电路测量这两种类型的巨磁电阻的磁敏特性,并根据实验测量的结果将这两种传感器在其灵敏度和测量范围上进行比较和研究.  相似文献   

18.
We have studied the transport and magnetic properties of strongly textured metal/insulator La1−xSrxMnO3 (x=0.4,0.1) bilayers and trilayers, grown by DC magnetron sputtering over MgO and SrTiO3 substrates. The multilayers present transport properties similar to those of the La0.6Sr0.4MnO3 films, being very sensitive to deposition conditions. Magnetic multilayers show a metal–insulator transition around Tc (250 K) and colossal magnetoresistance which is maximum around Tc. No extrinsic magnetoresistance associated with the multilayered structure was observed, probably due to the presence of ferromagnetic coupling between the metallic layers, as suggested by magnetization measurements.  相似文献   

19.
We report spin transport through the silicon in novel magnetic junction with half metallic as free layer and metallic as pinned layer. We used La0.7Sr0.3MnO3 as free layer, FeCo as pinned layer and studied the magnetoresistance through silicon as spacer layer. We fabricated this magnetic tunnel junction using RF/DC sputtering technique over SrTiO3 substrate. Tunneling magnetoresistance (TMR) measurement for this junction at room temperature was found to be 1.1 %. At 2 K, we found a large magnetoresistance of 396 %. TMR found to be increased with decreasing temperature. The results are discussed.  相似文献   

20.
稀土锰氧化物的低场磁电阻效应   总被引:18,自引:1,他引:17  
具有庞磁电阻效应的掺杂稀土锰氧化物因为其高的自旋极化率和自旋极化输运行为而表现出显著的低场磁电阻效应。这一效应在氧化物自旋电子学中有着深远的潜在应用前景。本文综述了国内外近年来在锰氧化物低场磁电阻增强这一研究领域的进展和存在的一些问题。全文分三个部分,首先概述了基于自旋极化散射和自旋极化隧穿两种输运机制的磁电阻理论;然后重点介绍掺杂稀土锰氧化物低场磁电阻增强的主要研究进展,这些进展背后的基本物理图象是通过人为引入自旋无序介质形成自旋极化散射和自旋极化隧穿,从而增强其低场磁电阻;第三部分讨论了基于掺杂稀土锰氧化物的磁性隧道结制备和输运性质。本文最后提出了锰氧化物低场磁电阻增强研究应该关注的一些物理问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号