首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional Direct Numerical Simulation (DNS) of a laminar separation bubble in the presence of oscillating flow is performed. The oscillating flow induces a streamwise pressure gradient varying in time. The special shape of the upper boundary of the computational domain, together with the oscillating pressure gradient causes the boundary layer flow to alternately separate and re-attach. When the inflow decelerates, the shear layer starts to separate and rolls up. Simultaneously the flow becomes 3D. After a transient period, the phase-averaged reverse flow inside the separation bubble reaches speeds ranging from 20 up to 150% of the free-stream velocity. During these phases, the flow is absolutely unstable and self-sustained turbulence can exist. When the inflow starts to accelerate, a spanwise roll of turbulent flow is shed from the shear layer. Shortly after this, the remainder of the separation bubble moves downstream and rejoins with the shed turbulent roll. During the flow-acceleration phase, a patch of laminar boundary layer flow is obtained. Along the flat plate, a series of turbulent patches of flow travelling downstream, separated by laminar flow can be observed, reminiscent of boundary layer flow in a turbine cascade with periodically appearing free-stream disturbances.  相似文献   

2.
Modified variants of differential turbulence models which make it possible continuously to calculate both the entire flow region with laminar, transition and turbulent regimes and local low Reynolds number zones are proposed for investigating the flow and heat transfer in the boundary layers developing in compressible gas flow past curvilinear airfoils. The effect of the intensity and scale of free-stream turbulence and their variability along the outer boundary layer edge, as well as the combined action of the turbulence intensity and the streamwise pressure gradient in flow past blade profiles, on the heat transfer and near-wall turbulence characteristics is analyzed. The numerical results are compared with experimental and theoretical data.  相似文献   

3.
Flow and heat transfer characteristics over flat, concave and convex surfaces have been investigated in a low speed wind tunnel in the presence of adverse and favourable pressure gradients (k), for a range of –3.6 × 10–6 ≤ k ≤ +3.6 × 10–6. The laminar near zero pressure gradient flow, with an initial momentum thickness Reynolds number of 200, showed that concave wall boundary layer was thinner and heat transfer coefficients were almost 2 fold of flat plate values. Whereas for the same flow condition, thicker boundary layer and 35% less heat transfer coefficients of the convex wall were recorded with an earlier transition. Accelerating laminar flows caused also thinner boundary layers and an augmentation in heat transfer values by 28%, 35% and 16% for the flat, concave and convex walls at k = 3.6 × 10–6. On the other hand decelerating laminar flows increased the boundary layer thickness and reduced Stanton numbers by 31%, 26% and 22% on the flat surface, concave and convex walls respectively. Turbulent flow measurements at k = 0, with an initial momentum thickness Reynolds number of 1100, resulted in 30% higher and 25% lower Stanton numbers on concave and convex walls, comparing to flat plate values. Moreover the accelerating turbulent flow of k = 0.6 × 10–6 brought about 29%, 30% and 24% higher Stanton numbers for the flat, concave and convex walls and the decelerating turbulent flow of k = –0.6 × 10–6 caused St to decrease up to 27%, 25% and 29% for the same surfaces respectively comparing to zero pressure gradient values. An empirical equation was also developed and successfully applied, for the estimation of Stanton number under the influence of pressure gradients, with an accuracy of better than 4%.  相似文献   

4.
The process of laminar to turbulent transition induced by a von Karman vortex street wake, was studied for the case of a flat plate boundary layer. The boundary layer developed under zero pressure gradient conditions. The vortex street was generated by a cylinder positioned in the free stream. An X-type hot-wire probe located in the boundary layer, measured the streamwise and normal to the wall velocity components. The measurements covered two areas; the region of transition onset and development and the region where the wake and the boundary layer merged producing a turbulent flow. The evolution of Reynolds stresses and rms-values of velocity fluctuations along the transition region are presented and discussed. From the profiles of the Reynolds stress and the mean velocity profile, a ‘negative' energy production region along the transition region, was identified. A quadrant splitting analysis was applied to the instantaneous Reynolds stress signals. The contributions of the elementary coherent structures to the total Reynolds stress were evaluated, for several x-positions of the near wall region. Distinct regions in the streamwise and normal to the wall directions were identified during the transition.  相似文献   

5.
6.
We describe large-eddy simulations (LES) of the flat-plate turbulent boundary layer in the presence of an adverse pressure gradient. The stretched-vortex subgrid-scale model is used in the domain of the flow coupled to a wall model that explicitly accounts for the presence of a finite pressure gradient. The LES are designed to match recent experiments conducted at the University of Melbourne wind tunnel where a plate section with zero pressure gradient is followed by section with constant adverse pressure gradient. First, LES are described at Reynolds numbers based on the local free-stream velocity and the local momentum thickness in the range 6560–13,900 chosen to match the experimental conditions. This is followed by a discussion of further LES at Reynolds numbers at approximately 10 times and 100 times these values, which are well out of range of present day direct numerical simulation and wall-resolved LES. For the lower Reynolds number runs, mean velocity profiles, one-point turbulent statistics of the velocity fluctuations, skin friction and the Clauser and acceleration parameters along the streamwise, adverse pressure-gradient domain are compared to the experimental measurements. For the full range of LES, the relationship of the skin-friction coefficient, in the form of the ratio of the local free-stream velocity to the local friction velocity, to both Reynolds number and the Clauser parameter is explored. At large Reynolds numbers, a region of collapse is found that is well described by a simple log-like empirical relationship over two orders of magnitude. This is expected to be useful for constant adverse-pressure gradient flows. It is concluded that the present adverse pressure gradient boundary layers are far from an equilibrium state.  相似文献   

7.
A high Reynolds number flat plate turbulent boundary layer is investigated in a wind-tunnel experiment. The flow is subjected to an adverse pressure gradient which is strong enough to generate a weak separation bubble. This experimental study attempts to shed some new light on separation control by means of streamwise vortices with emphasize on the change in the boundary layer turbulence structure. In the present case, counter-rotating and initially non-equidistant streamwise vortices become and remain equidistant and confined within the boundary layer, contradictory to the prediction by inviscid theory. The viscous diffusion cause the vortices to grow, the swirling velocity component to decrease and the boundary layer to develop towards a two-dimensional state. At the position of the eliminated separation bubble the following changes in the turbulence structure were observed. The anisotropy state in the near-wall region is unchanged, which indicates that it is determined by the presence of the wall rather than the large scale vortices. However, the turbulence in the outer part of the boundary layer becomes overall more isotropic due to an increased wall-normal mixing and a significantly decreased production of streamwise fluctuations. The turbulent kinetic energy is decreased as a consequence of the latter. Despite the complete change in mean flow, the spatial turbulence structure and the anisotropy state, the process of transfer of turbulent kinetic energy to the spanwise fluctuating component seems to be unchanged. Local regions of anisotropy are strongly connected to maxima in the turbulent production. For example, at spanwise positions in between those of symmetry, the spanwise gradient of the streamwise velocity cause significant production of turbulent fluctuations. Transport of turbulence in the spanwise direction occurs in the same direction as the rotation of the vortices.  相似文献   

8.
A numerical simulation of a square jet ejected transversely into a laminar boundary-layer flow was performed at a jet-to-main-flow velocity ratio of 9.78 and jet Reynolds number of 6330. The jet consisted of a single pulse with a duration equal to the time required for the jet fluid to travel 173 jet widths. A strongly-favourable streamwise pressure gradient was applied to the boundary layer and produced a freestream acceleration that is above the typical threshold required for relaminarization. The results of the simulation illustrate the effect of the favourable streamwise pressure gradient on the flowfield created by the transverse jet. Notably, the horseshoe vortex system created upwind of the jet remains steady in time and does not induce noticeable fluctuations in the jet flow. The upwind and downwind shear layers of the jet roll-up through a Kelvin–Helmholtz-like instability into discrete shear-layer vortices. Jet vorticity in the upwind and downwind shear layers accumulates near the corners of the jet and produces two sets of vortex pairs, the former of which couple with the shear-layer vortices to produce large, counter-rotating vortices in the freestream, while the latter are unstable and periodically produce hairpin vortices in the main-flow boundary layer and elongated vortices in the freestream behind the jet. The departure of the jet flowfield from the vortical structures typically observed in transverse jets illustrates the substantive effect of the favourable streamwise pressure gradient on the flowfield created by the jet.  相似文献   

9.
Experimental results are reported for the response to a favourable pressure gradient of an initially turbulent boundary layer (Re θ?≈?1600) developing on a flat plate with its leading edge skewed at 60° to the approach flow. The pressure gradient orthogonal to the leading edge is nominally the same as that which was shown by Escudier et?al. [(1998) Exp Fluids 25: 491–502] to cause extreme thinning of a two-dimensional (2D) (i.e. unskewed) turbulent boundary layer and the intermittency in the immediate vicinity of the surface to fall to zero, i.e. an apparent laminarisation of the boundary layer. In the case of the skewed boundary layer, the responses of the turbulence and mean-flow structures are qualitatively similar to those for the 2D situation. However, the streamwise pressure gradient is much weaker than for the 2D experiment and the extent of the changes it produces is much reduced. Even so, the changes are considerably greater than would be expected from the magnitude of the streamwise pressure gradient.  相似文献   

10.
暖季强降雨对多年冻土南界斜坡路基稳定性影响分析   总被引:2,自引:0,他引:2  
蔡书鹏  杨林  唐川林 《力学学报》2008,40(2):250-254
为阐明表面活性剂水溶液的减阻作用,使用LDV对零压梯度的二维湍流平板边界层中的CTAB 表面活性剂水溶液的湍流特性进行了实验研究. 结果表明:与牛顿流体相比,CTAB水溶液边 界层的粘性底层增厚;主流时均速度分布有被层流化的趋势,对数分布域上移;主流方向速 度湍动强度峰值减小,且远离壁面,在靠近边界层中部,出现第2峰值;垂直于主流方向的 速度湍动强度受到了大幅度抑制,雷诺应力沿着边界层厚度方向几乎为零. 结果说明CTAB 水溶液具有减弱湍流湍动各个成分相关度的作用,从而能够使雷诺应力降低、湍流能量生成 项减小最终降低流体的输送动力.  相似文献   

11.
A method of statistical modeling the flow in the boundary-layer transition region is proposed on the basis of experimental data on kinematics and dynamics of turbulent spots (Emmons spots) on a flat plate in an incompressible fluid. This method allows one to determine the intermittency with allowance for overlapping of the spots, the forces on the plate surface, and the flow field in the vicinity of the transition region if the field of the streamwise component of the mean velocity in the developed turbulent boundary layer is known as a function of the Reynolds number. In contrast to multi-parameter models of the transition, this approach makes it possible to avoid the use of physically meaningless parameter values.  相似文献   

12.
A general solution method is suggested for the prediction of the turbulent free convection heat transfer from curved surfaces. The method which may be viewed as a generalized version of the Eckert-Jackson method for the isothermal plate, is designed to deal with bodies of arbitrary geometrical configurations. The surface wall temperature is also allowed to vary in the streamwise direction in an arbitrary fashion. For the illustrative purpose, the calculations are carried out for the turbulent free convection about the horizontal circular cylinder, and the results are compared with the existing empirical formula. The flow transition from laminar to turbulent is also predicted by matching the laminar and turbulent solutions.  相似文献   

13.
A numerical scheme has been developed for computing fluid flow and heat transfer in periodically repeating geometries. Unstructured solution-adaptive meshes are used in a cell-centred finite volume formulation. The SIMPLE algorithm is used for pressure‒velocity coupling. For periodic flows the static pressure is decomposed into a periodic component and one that varies linearly in the streamwise direction. The latter is computed from the imposition of overall mass balance at the periodic boundary. A subiteration between the periodic pressure correction equation and the correction to the linear component is used. For heat transfer a formulation using the physical rather than the scaled temperature is employed. The scheme is applied to both laminar and turbulent computations of periodic flow and heat transfer in a variety of heat exchanger geometries; comparison with published computations and experimental data is found to be satisfactory. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
The interaction between longitudinal vortices and flat plate boundary layer has been studied numerically for both laminar and turbulent flow situations. The vortices are assumed to be placed in an otherwise two-dimensional boundary layer flow. The flow is assumed to be incompressible and steady. Considering the fact that the velocity, vorticity and temperature gradients in the transverse directions are much larger than the longitudinal (streamwise) gradients for these flows, the original Navier Stokes equations are parabolized in the streamwise direction. A simple model, based on Boussinesq hypothesis, is used for turbulent flow. The discretized equations are then solved step by step in the streamwise direction, using an iterative procedure at each station. Numerical solutions have been obtained for different parameters, such as the Reynolds number, the circulation and the initial position of the vortices. The computed flow patterns and the skin friction coefficient and Stanton number are found to be qualitatively consistent with available experimental results. It is shown that the interaction between the vortices and the boundary layer may severely disturb the boundary layer flow field and thus considerably increase the local skin friction and heat transfer rate on surface of an aircraft.  相似文献   

15.
Transition to turbulence in the boundary layer on a flat plate is investigated numerically for an incompressible fluid flow with a given negative free-stream pressure gradient. The transition is investigated using the three-parameter turbulence model developed by the authors. The calculation results are compared with the available experimental data.  相似文献   

16.
The receptivity of a laminar boundary layer to free stream disturbances has been experimentally investigated through the introduction of deterministic localized disturbances upstream of a flat plate mounted in a wind tunnel. Hot-wire measurements indicate that the spanwise gradient of the normal velocity component (and hence the streamwise vorticity) plays an essential role in the transfer of disturbance energy into the boundary layer. Inside the laminar boundary layer the disturbances were found to give rise to the formation of longitudinal structures of alternating high and low streamwise velocity. Similar streaky structures exist in laminar boundary layers exposed to free stream turbulence, in which the disturbance amplitude increases in linear proportion to the displacement thickness. In the present study the perturbation amplitude of the streaks was always decaying for the initial amplitudes used, in contrast to the growing fluctuations that are observed in the presence of free stream turbulence. This points out the importance of the continuous influence from the free stream turbulence along the boundary layer edge.  相似文献   

17.
The problem of turbulent free convection heat transfer from curved surfaces to non-Newtonian power-law fluids has been investigated using the Nakayama-Koyama solution methodology. The scheme is designed to deal with bodies of arbitrary geometric configurations and hence can be viewed as a generalized version of the Shenoy-Mashelkar approach for turbulent free convection heat transfer from a flat vertical plate to a power-law fluid. The surface wall temperature is allowed to vary in the streamwise direction in an arbitrary fashion, and calculations are carried out for the turbulent free convection about the horizontal circular cylinder and sphere for illustrative purposes. Available theoretical and experimental data have been compared with the predictions of the present analysis and the comparison of results has been found to be reasonably good.  相似文献   

18.
Direct numerical simulations of instability development and transition to turbulence in a supersonic boundary layer on a flat plate are performed. The computations are carried out for moderate supersonic (free-stream Mach number M = 2) and hypersonic (M = 6) velocities. The boundary layer development is simulated, which includes the stages of linear growth of disturbances, their nonlinear interaction, stochastization, and turbulent flow formation. A laminar–turbulent transition initiated by distributed roughness of the plate surface at the Mach number M = 2 is also considered.  相似文献   

19.
In this paper, direct numerical simulation is performed to investigate a pulsatile flow in a constricted channel to gain physical insights into laminar–turbulent–laminar flow transitions. An in-house computer code is used to conduct numerical simulations based on available high-performance shared memory parallel computing facilities. The Womersley number tested is fixed to 10.5 and the Reynolds number varies from 500 to 2000. The influences of the degree of stenosis and pulsatile conditions on flow transitions and structures are investigated. In the region upstream of the stenosis, the flow pattern is primarily laminar. Immediately after the stenosis, the flow recirculates under an adverse streamwise pressure gradient, and the flow pattern transitions from laminar to turbulent. In the region far downstream of the stenosis, the flow becomes re-laminarised. The physical characteristics of the flow field have been thoroughly analysed in terms of the mean streamwise velocity, turbulence kinetic energy, viscous wall shear stresses, wall pressure and turbulence kinetic energy spectra.  相似文献   

20.
An inclined turbulent jet discharging a passive scalar into a turbulent crossflow is investigated under conditions of favorable, zero and adverse streamwise pressure gradient. Experiments are conducted in water by means of magnetic resonance velocimetry and magnetic resonance concentration measurements. The velocity ratio and density ratio are equal to one for all cases. The flow configuration is relevant to film cooling technology, the molecular properties of the fluid being immaterial in the fully turbulent regime. Under favorable pressure gradient (FPG), the streamwise acceleration tilts the jet trajectory toward the wall, which would be beneficial for the film cooling performance. However, the counter-rotating vortex pair is strengthened in the accelerating flow by streamwise stretching. Also, the crossflow boundary layer is significantly thickened by increasingly adverse pressure gradient, which affects the mass transfer from the jet. Overall, the more intense counter-rotating vortices and the thinner boundary layer associated with increasingly FPG enhance the scalar dispersion into the main flow, hampering the film cooling performance in terms of surface effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号