首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SEPEHRIAN  Harnid  WAQIF-HUSAIN  Syed  RAKHSHANDERU  Farrokh  KAMEL  Leila 《中国化学》2009,27(11):2171-2174
Modified MCM‐41 has been prepared by bi‐functionalization of thiol and amino functional groups onto mesoporous silicate MCM‐41. Elemental analysis (EA), thermogravimetry analysis (TGA) and FTIR techniques were used to quantify the attachment of the thiol and amino functional groups to the mesoporous silicate pore wall. Powder X‐ray diffraction (PXRD) and nitrogen adsorption techniques were used to establish the pore diameter, packing of the pores and specific surface area of the modified mesoporous silicate MCM‐41. Adsorption behavior for 18 metal ions on this sorbent has been studied and discussed. This sorbent has high affinity for zinc ions against amino‐ or thiol‐functionalized MCM‐41 sorbents.  相似文献   

2.
以共沉淀法制备了半焦负载Zn/Fe/Ce(物质的量比1.0:2.0:0.6)高温煤气脱硫剂,在固定床装置上研究了再生反应温度、进口SO2浓度以及再生气空速对再生性能的影响,并进行三次硫化-再生循环测试。采用XRD、SEM、BET等测试手段对脱硫剂的新鲜样、硫化样及再生样进行了表征。实验结果表明,半焦负载Zn/Fe/Ce高温煤气脱硫剂在SO2气氛下600 ℃就能发生再生反应,且再生后的主要产物为ZnFe2O4、CeO2和单质硫;最佳再生条件为,再生温度700 ℃、进口SO2体积分数为12%、再生气空速为5 000 h-1。脱硫剂经过多次硫化-再生循环后,脱硫剂仍能保持较好的硫化活性。  相似文献   

3.
The limestone modified by pyroligneous acid has been proved to have good CO2 capture behavior in the calcium looping process. In this work, SO2 retention of the highly cycled modified limestone in the carbonation/calcination cycles was investigated in a thermogravimetric analyzer (TG). The cyclic carbonation/calcination of the modified limestone was performed in a dual fixed-bed reactor and then the cycled modified limestone was sent for sulfation in TG. The effects of sulfation temperature, cycle number, and prolonged carbonation on SO2 retention of the cycled modified limestone were discussed. The optimum temperature for sulfation of the cycled modified limestone should be in the range of 900–950 °C. The effect of sulfation temperature on SO2 retention of the modified limestone drops with increasing cycle number. With increasing cycle number from 20 to 100, the sulfation conversion of the cycled modified limestone is stable and can reach ~0.4. The cycled modified limestone exhibits obviously higher SO2 retention than the cycled raw one for the same number of cycles. The prolonged carbonation increases SO2 retention of the modified limestone and the raw one after the subsequent cycles. The sulfation conversions of the modified limestone and the raw one at 118 min after 9-h carbonation in the 20th cycle increase 43 and 56 %, respectively. The cycled modified limestone shows a greater SO2 retention than the cycled raw one after the same prolonged carbonation treatment. The prolonged carbonation increases the pores in 5–20 nm range which is considered the optimum pore size for sulfation of CaO-based sorbent, so it results in an improvement in SO2 retention of the cycled sorbents.  相似文献   

4.
Adsorption methods using solid sorbents are an alternative to the absorption technology in the processes of purification gases from carbon dioxide. There is a need to rapidly assess the suitability of sorbents for use it in PSA, TSA, or VPSA installations. Important parameters which determine the quality of the sorbent are the sorption capacity of sorbent, selectivity to CO2 and the possibility of regeneration. This paper presents the results of sorption/desorption of CO2 study on the impregnated porous materials using thermogravimetric methods. Thermogravimetry allows for rapid assessment of sorption capacity and regeneration of the sorbents. Specially selected temperature program allowed to determine the sorption capacity of sorbents depending on the concentration of CO2 in the gas mixture and temperature. Degree of sorbent purification was determined in desorption process.  相似文献   

5.
6.
Macroporous monolithic sorbents based on divinylbenzene are prepared in capillary tubes with the use of poor porogens of various sizes and molecular masses. The porosity of sorbents is studied via gravimetry and inverse hydrodynamic and size-exclusion chromatography methods. It is shown that all sorbents possess the biporous structure. Macropores with sizes on the order of a micrometer form an interconnected structure through which a solvent flows (flow-through pores). The diameter of impermeable pores is 30–40-molecular-mass solutes solely. As the molecular mass of the poor porogen decreases, the sizes of flow-through pores and the permeability of the monolith decline. At the same time, the fraction of free volume within the monolith accessible for the separation of polymer molecules is the highest for the sorbent prepared with the use of nonanol as a poor porogen.  相似文献   

7.
Xiangjun Liu 《Talanta》2009,78(1):253-2300
A new kind of polymer sorbent based on the specific interaction of Hg(II) with nucleic acid base, thymine, is described for the selective adsorption of Hg(II) from aqueous solution. Two types of sorbents immobilized with thymine were prepared by one-step swelling and polymerization and graft polymerization, respectively. The maximum static adsorption capacity of the new polymer sorbents for Hg(II) is proportional to the density of thymine on their surface, up to 200 mg/g. Moreover, the new kind polymer sorbent shows excellent selectivity for Hg(II) over other interfering ions, such as Cu(II), Cd(II), Zn(II), Co(II), Ca(II) and Mg(II), exhibits very fast kinetics for Hg(II) adsorption from aqueous solution, and can be easily regenerated by 1.0 M HCl. It also has been successfully used for the selective adsorption of spiked Hg(II) from real tap water samples. This new thymine polymer sorbent holds a great promise in laboratory and industrial applications such as separation, on-line enrichment, solid-phase extraction, and removal of Hg(II) from pharmaceutical, food and environmental samples.  相似文献   

8.
以葡萄糖酸钙与葡萄糖酸镁及L-乳酸铝为前驱物,湿法制得了四种CaO/MgO和CaO/Ca9Al6O18吸收剂,并进行了同时捕集CO2/SO2的实验。考察了吸收剂种类、质量配比、SO2浓度及煅烧温度等对吸收剂吸收性能的影响。结果表明,CaO/MgO(质量比为75%/25%)吸收剂和CaO/Ca9Al6O18(质量比为75%/25%)吸收剂分别保持了最好的吸收CO2能力和最好的循环稳定性。SO2严重阻碍了吸收剂对CO2的捕集。SO2浓度越高,吸收剂吸收CO2能力下降的越快,但同时吸收SO2的转化率也越高。数次循环后,总的Ca利用率开始上升,且SO2浓度越高,上升趋势越明显。煅烧温度对CaO/MgO吸收剂和CaO/Ca9Al6O18吸收剂循环吸收特性的影响略有不同。  相似文献   

9.
《Journal of Energy Chemistry》2017,26(5):1030-1038
The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for CO_2 capture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the CO_2 sorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher CO_2 sorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest CO_2 sorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiO_2 particles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for CO_2 and the stronger temperature dependence of CO_2 capacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the CO_2 sorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG.  相似文献   

10.
The evaluation of groundwater quality in the Dammam formation, Faddak farm, Karbala Governorate, Iraq proved that the sulfate (SO42−) concentrations have high values; so, this water is not suitable for livestock, poultry and irrigation purposes. For reclamation of this water, manufacturing of new sorbent for permeable reactive barrier was required through precipitation of Mg and Fe hydroxides nanoparticles on the activated carbon (AC) surface with best Mg/Fe molar ratio of 7.5/2.5. Mixture of 50% coated AC and 50% scrap iron was applied to eliminate SO42− from contaminated water with efficiency of 59% and maximum capacity of adsorption equals to 9.5 mg/g for a time period of 1 h, sorbent dosage 40 g/L, and initial pH = 5 at 50 mg/L initial SO42− concentration and 200 rpm shaking speed. Characterization analyses certified that the plantation of Mg and Fe nanoparticles onto AC was achieved. Continuous tests showed that the longevity of composite sorbent is increased with thicker bed and lower influent concentration and flow rate. Computer solution (COMSOL) software was well simulated for continuous measurements. The reclamation of real contaminated groundwater was achieved in column set-up with efficiency of 70% when flow rate was 5 mL/min, bed depth was 50 cm and inlet SO42− concentration was 2301 mg/L.  相似文献   

11.
Series sorbents of Cu, Zn, Ni, Ce and Ag metal components supported on γ-Al2O3 carrier for removing thiophene from benzene were prepared by conventional and ultrasound-assisted incipient-wetness impregnation method. The static adsorption experiments were carried out in the thiophene-benzene solution with thiophene concentration of 500?mg/L. The results show that the desulfurization activity of all γ-Al2O3 sorbents modified by different metal components obviously increase, among which the sorbent modified by silver nitrate has the best performance. The active components of sorbents from Cu, Zn, Ni, Ce nitrates loaded on γ-Al2O3 carrier are their oxides. Besides Ag2O, the products of silver nitrate thermal decomposition in sorbent prepared still have Ag0 and Ag–O–Al species. The assistant ultrasound in the process of sorbent preparation can not only shorten the impregnation time, but also enrich the pore structure of sorbent and improve the size and distribution of the Ag species, which is favorable to the removal of thiophene from benzene. The desulfurization capacity of sorbent changes with the Ag content loaded. The sorbent with 15?% quality content of Ag prepared by ultrasound-assisted impregnation method has the highest desulfurization efficiency. It could reduce the thiophene concentration to 1.7?mg/L from 500?mg/L at room temperature and ambient pressure, with the desulfurization efficiency of more than 99?%, when the ratio of sorbent to solution was 1:4?(g/mL).  相似文献   

12.
A porous titania has been prepared by using polystyrene spheres and tri-block copolymer ((EO)20–(PO)70–(EO)20, P123) as templates, and its structure, composition, and performance as anode of lithium ion battery are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction, and galvanostatic charge/discharge test. The results from SEM and TEM indicate that the prepared porous titania has a trimodal pore system, in which the pores are in ordered arrangement and interconnected with the same pore diameter and uniform wall thickness. The charge/discharge tests show that the battery using the prepared porous titania as anode exhibits good rate capacity and cycle stability.  相似文献   

13.
Preparation of activated carbons from a powdered polyethylene terephthalate waste preliminarily impregnated with sulfur compounds (Na2S2O3, Na2S) was studied. The pore structure of the resulting sorbents was examined.  相似文献   

14.
Separation of mineral electrolytes according to size exclusion mechanism using neutral nanoporous polystyrene sorbents and carbonaceous materials has been examined in detail on hand of HCl and CaCl2 solutions, taken separately and in the mixture. Phase distribution coefficients of the above electrolytes have been measured under static conditions at different concentrations. The k‐values and their dependence on the concentration were correlated with the elution curves of the components from a chromatographic column. Both the static and dynamic data suggest a strong dependence of the hydration number and effective size of ions on the concentration. Self‐concentration of HCl in small pores and that of CaCl2 outside of small pores exhibits itself in both static and chromatographic experiments and results from the relocation of the components largely within the volume of the initial mixture. Additional apparent “retention” of HCl in the porous volume of the sorbent in concentrated electrolyte mixtures was shown to be caused by the competition between all ions of the system for hydration water. Increased separation selectivity and enhanced self‐concentration effects for more concentrated mixtures point to preparative and industrial perspectives of size exclusion chromatography (SEC) of complex electrolyte mixtures on nanoporous neutral sorbents.  相似文献   

15.
The effects of pore length distribution (PLD) and solution resistance, Rsol, on the kinetics of double-layer charging/discharging of the activated carbon fiber cloth electrode (ACFCE) were investigated in a 30 wt% H2SO4 solution using nitrogen gas adsorption, a.c. impedance spectroscopy, the current transient technique, and cyclic voltammetry. The impedance spectra of the ACFCE were theoretically calculated based upon the transmission line model in consideration of the pore size distribution (PSD) and the PLD. From comparison of both the experimental and theoretical impedance spectra of the ACFCE, it is suggested that the deviation from the ideal impedance behavior of a cylindrical pore in the experimental impedance spectrum of the ACFCE is mainly ascribed to PLD, rather than to PSD. The cathodic current transients and cyclic voltammograms were theoretically calculated based upon the transmission line model as functions of the standard deviation of the PLD and Rsol. From the results, it is concluded that ion penetration into the pores is closely related to both and Rsol during double-layer charging/discharging of the ACFCE, that is, the larger and Rsol, the lower is the rate capability, thus causing higher retardation of ion penetration into the pores.  相似文献   

16.
Activated carbon sorbents impregnated with KOH, Fe(NO3)3, Cu(NO3)2, Zn(NO3)2 or Co(NO3)2 and their applications in catalytic oxidation reaction of COS were investigated. The results showed that the activated carbon modified with 10 % (mass percentage) KOH enhanced the adsorption ability significantly. And it was also found that the oxygen content and temperature were the two most important factors in the COS adsorption. Further investigation on the pore structures of the samples with X-ray photoelectron spectroscopy indicated that an adsorption/oxidation process happened in the KOH modified activated carbon in which the major existing forms of sulfur were SO4 2? and S species. The oxidation of COS suggested that KOH in the micropores may play a catalytic role during the adsorption. On the other hand, we found that the desorption activation energy from KOHW was higher than that from AC by the CO2-TPD spectra, which indicated the adsorption of CO2 on KOH impregnated activated carbon was stronger. The strong adsorption could be attributed to the basic groups on the activated carbon surface. In conclusion, the activated carbon impregnated with KOH promises a good candidate for COS adsorbent.  相似文献   

17.
Amine double-functionalized adsorbents were fabricated using silica gel as supports and their capabilities for CO2 capture were examined. Aminopropyltrimethoxysilane (1N-APS), and N1-(3-trimethoxysilylpropyl)diethylenetriamine (3N-APS) were used as grafted amine compounds, and tetraethylenepentamine and polyethyleneimine were used as impregnated species. The influence of double-functionalization method on the CO2 adsorption performance and textural properties of adsorbents was investigated. The adsorption capacity, the amine efficiency, and the thermal stability of double-functionalized sorbents depend strongly upon molecular variables associated with two different functional states (i.e., chemically grafted and physically impregnated amines). The temperature dependence of adsorption isotherms reveals that the CO2 adsorption behavior in the double-functionalized adsorbents follow the diffusion limitation model proposed by Xu et al. (Energy Fuels 16:1463–1469, 2002) where the CO2 adsorption is helped by the diffusion of impregnated amines. It is also found that the adsorption isotherm in the double-functionalized sorbent system with a proper choice for grafted and impregnated amines is nearly independent of temperature, which may offer a novel means to fabricate practically useful sorbents that can be used in a wide range of temperature without loss of CO2 adsorption capacity.  相似文献   

18.
In a fixed-bed absorber at 40°C, the dynamics of carbon dioxide sorption over composite sorbents prepared by impregnation of potassium carbonate in various porous matrixes is studied. The dynamic capacity of the synthesized sorbents is shown to reach 0.12 g CO2 per 1 g of the sorbent. The composite dynamic capacity depends on the nature of the host matrix and decreases in the sequence alumina > activated carbon > vermiculite > silica gel. For K2CO3-on-alumina, the sorption capacity decreases considerably after the first cycle of «absorption and regeneration under 200–350°C», whereas the sorbents based on active carbons could be reversibly restored. The findings are discussed within the idea on a chemical interaction between the host matrix and the impregnated salt.  相似文献   

19.
For the sorption of rubomycin, an antitumor athracycline-type antibiotic, on BDM-12 carboxyl-containing heterogeneous crosslinked polymer sorbent, it was shown that the measured time dependences of the extent of process are determined by two characteristic times: τ1 (in the range of short times) and τ2 (at long times). A phenomenological theory of the kinetics of sorption on the heterogeneous sorbent was developed on the basis of a biporous sorbent model. The dependences of the characteristic times τ1 and τ2 on the sorbent grain radius were obtained. It was concluded that the theory makes predictions in good agreement with experimental data and allows calculating the most important kinetic parameters of sorption of organic ions on polymer sorbents: the time of diffusion of the sorbate into microgranules, the diffusion coefficient of the sorbate in transport pores, the effective coefficient of the sorbate diffusion into the heterogeneous sorbent, etc.  相似文献   

20.
The distribution of CaCl2 and HCl (separately and in a mixture) between the aqueous and nanoporous hypercrosslinked polystyrene sorbent phases was studied under static conditions. It was shown that virtually the whole pore volume of the sorbent was accessible to HCl, whereas CaCl2 was largely excluded from small pores. It was found that the distribution isotherms of the electrolytes between the phases changed significantly in going from the pure electrolytes to their mixture. Under dynamic (chromatographic) conditions, the elution profiles of CaCl2 and HCl (separately and in a mixture) were studied. It was shown that the components of the mixture competed for the pore space of the sorbent: small HCl molecules were displaced from large pores and the interstitial space into small pores inaccessible to CaCl2. (This is why the retention of HCl in the chromatography column significantly increased as the concentration of the mixture grew; that is, both the efficiency and selectivity of separation increased as the column became loaded heavier.) It was found that the degree of hydration of ions decreased as the concentration of the solution increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号