首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of vacuum ultraviolet (vuv) irradiation on siliceous coatings of polycarbonate (PC) substrates derived by the sol–gel method, with the aim of improving the abrasion resistance of the substrate surface. Methyltriethoxysilane with colloidal silica was used to prepare the sol solution. The sol solution was spin-coated on PC and this was followed by vuv irradiation with a Xe excimer lamp at 172 nm under N2 atmosphere. The PC substrate with vuv irradiated coating retained its high transmittance in the visible region for about 3 or more times of scraping turns by a steel wool tester on the surface, compared with the non-irradiated or mercury lamp-irradiated coatings, which demonstrated the remarkable improvement of the abrasion resistance by the vuv irradiation. The chemical changes under the vuv irradiation were also investigated by FTIR–ATR spectroscopy, composition analysis conducted with X-ray photoelectron spectroscopy and hardness measurements. It was concluded that the vuv light irradiation resulted in degrading the Si–CH3 bond in sol–gel derived siliceous coatings to yield hardening of the coatings. The transmittance of the coating in vuv region also increased with the Xe lamp irradiation.  相似文献   

2.
Sol–gel nanocomposite coatings were fabricated by spraying precursor mixtures containing hydrophobically modified silica (HMS) nanoparticles dispersed in sol–gel matrices prepared with acid-catalyzed tetraethoxysilane (TEOS), and methyltriethoxysilane (MTEOS). The hydrophobicity of the coatings increased with increase in the concentration of HMS nanoparticles. Superhydrophobic coatings with water contact angle (WCA) of 166° and roll-off angle <2° were obtained by optimizing the sol–gel processing parameters and the concentration of silica nanoparticles in the coating. FESEM studies have shown that surface has a micro-nano binary structure composed of microscale bumps and craters with protrusions of nanospheres. The properties of composite coatings fabricated by spin coating and spray coating methods were compared. It was found that the microstructure and the wettability were also dependent on the method of application of the coating.  相似文献   

3.
Two hybrid coatings synthesized by using alkoxysilanes as precursors in a sol–gel process, differing from each other in terms of the organic components in alkoxysilanes, have been developed to improve the water repellent properties of base paper. The sol–gel‐coated base paper samples were characterized by scanning electron microscopy, atomic force microscopy, confocal laser scanning microscopy, X‐ray photoelectron spectroscopy, time‐of‐flight secondary ion mass spectrometry, and contact angle measurements. The sol–gel coatings were found to clearly change the surface properties of base paper. Thin coating layers were formed on base paper surfaces. The topographical data indicated the formation of discontinuous thin films; the time‐of‐flight secondary ion mass spectrometry analyses confirmed that the coatings were covering the fibres but only partially covered the fibre–fibre intersections. Water and the subsequent heat treatment used as a reference treatment reduced the surface roughness and porosity and slightly changed the surface chemistry of the base paper. The wettability and absorptivity of base paper was clearly reduced by the applied coatings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
New simple aqueous sol–gel procedure has been used for producing hard transparent organic–inorganic coatings on polycarbonate (PC). Sol-gel thins films were prepared by mixing Si and Al aqueous alkoxides and applied on the plasma treated PC. Tetraethyl orthosilicate (TEOS), 3-glycidoxypropyltrimethoxysilane (GPTMS) and aluminum tri sec-butoxide were used as main precursors. Before applying coatings PC were treated by Dielectric Barrier Discharge (DBD) system being conducted at atmosphere pressure. The effects of temperature, sols volume ratios and aging time on the coatings properties were scrutinized. Chemical, structural, morphological, optical and mechanical analyses of the samples were done by ATR-FTIR, EDS, XRD, FE-SEM, TEM, UV/vis spectroscopy, ellipsometry, pencil hardness and eraser scratch methods. TEM results showed well-dispersed nano-particles in the liquid sol. All of the films showed higher average transmittance (89 %) than the raw PC (86 %) that was stemmed from the lower refractive index (1.481) than raw PC (1.58). Films indicated good adhesion onto the plasma treated substrates (5B). The pencil hardness of the PC substrate (4B) improved to 3H (8 pencil grade increment) with just a single layer coating (775 nm thickness) due to the preparation of new hard structures of interlocked Si and Al atoms.  相似文献   

5.
Several silica‐based solutions with 50 g/l of SiO2 were prepared from sodium silicate solutions and silica sol; the silicate conversion coatings were obtained by immersing hot‐dip galvanized steel sheets in these solutions. These solutions were characterized using high‐resolution transmission electron microscopy and 29Si nuclear magnetic resonance; the morphology of the coatings was observed by SEM and atomic force microscopy while the corrosion resistance was evaluated by electrochemical measurements as well as neutral salt spray tests. The results show that the coatings obtained from the single silica sol solution had poor adhesion and the coating obtained from the sodium silicate solution with low SiO2/Na2O molar ratio was uneven. By adding the silica sol to the silicate solution with low molar ratio, uniform coatings with better protection property were obtained. According to the results of 29Si nuclear magnetic resonance spectra, the effects of the distribution of silicate anions with various polymerization degrees in the silica‐based solutions on the microstructure and corrosion resistance of the silicate coatings are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Multilayered non-quarter wavelength (design wavelength ??0?=?908?nm) based antireflection coating (ARC) has been developed by sol?Cgel process. Simulation of a 3-layers ARC design with the materials of refractive index ranging between 1.15 and 1.65 has been done to fulfil the experimental processing for deposition of specific thickness and refractive index. Colloidal sol based silica, polymeric sol based silica and complexed solution based zirconia were used for the fabrication of AR layers. The microstructural studies of the individual layer and also of ARC using FESEM, EDX, AFM and XRD were done separately. Surface roughnesses were found gradually decreasing by successive deposition of zirconia, colloidal silica and polymeric silica layers. Optical performance of the synthesized ARC (%0.67, at ??0) was close to that of (%0.63, at ??0) the theoretically designed value.  相似文献   

7.
In this study, a series of ultraviolet (UV)‐curable organic–inorganic hybrid coating materials containing phosphorus were prepared by sol–gel approach from acrylate end‐capped urethane resin, acrylated phenyl phosphine oxide oligomer (APPO), and inorganic precursors. TEOS and MAPTMS were used to obtain the silica network and Ti:acac complex was employed for the formation of the titania network in the hybrid coating systems. Coating performance of the hybrid coating materials applied on aluminum substrates was determined by the analysis techniques, such as hardness, gloss, impact strength, cross‐cut adhesion, taber abrasion resistance, which were accepted by international organization. Also, stress–strain test of the hybrids was carried out on the free films. These measurements showed that all the properties of the hybrids were enhanced effectively by gradual increase in sol–gel precursors and APPO oligomer content. The thermal behavior of the hybrid coatings was investigated by thermogravimetric analysis (TGA) analysis. The flame retardancy of the hybrid materials was examined by the limiting oxygen index (LOI); the LOI values of pure organic coating (BF) increased from 31 to 44 for the hybrid materials containing phosphorus (BF‐P:40/Si:10). The data from thermal analysis and LOI showed that the hybrid coating materials containing phosphorus have higher thermal stability and flame resistance properties than the organic polymer. Besides that, it was found that the double bond conversion values for the hybrid mixtures were adequate in order to form an organic matrix. The polycondensation reactions of TEOS and MAPTMS compounds were also investigated by 29Si‐NMR spectroscopy. SEM studies of the hybrid coatings showed that silica/titania particles were homogenously dispersed through the organic matrix. In addition, it was determined that the hybrid material containing phosphorus and silica showed fibrillar structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Silica Sol-Gel Coatings on Metals Produced by EPD   总被引:1,自引:0,他引:1  
The objective of this work has been to combine the sol-gel method and the electrophoretic deposition (EPD) process to prepare thick coatings onto metallic substrates. Two different routes were used for preparing the sol-gel silica suspensions. On one hand, silica particulate sols were obtained by basic catalysis of alkoxides and alkylalkoxides. On the other, silica suspensions were prepared by adding a commercial colloidal silica sol to an organic-inorganic acid catalysed silica sol. The properties of the suspension and the physical parameters associated to EPD (current density, potential, electric field and deposition time) were studied. Crack-free deposits up to 20 m were obtained after drying and crack-free glass-like coatings of 12 m after sintering at 500°C for 30 minutes. The electrochemical behaviour of these coatings was evaluated by potentiodynamic methods, showing an excellent behaviour against corrosion.  相似文献   

9.
The preparation of water repellent textiles by coating with different modified silica sols has been investigated. For this, pure and with 3-glycidoxypropyl triethoxysilane co-condensed silica sols were modified by three types of additives: alkyltrialkoxysilanes, polysiloxane derivatives and a fluorine containing silane. Hydrophobic properties of the coated fabrics of polyamide and of polyester mixed with cotton were determined using contact angle measurements. The hydrophobicity increases with increasing concentration of the alkylsilane additive in the silica sol and the length of the alkyl chain but with high additive concentrations plateau values in hydrophobicity were reached. Analogously textile coatings with high hydrophobicity were gained using hydrophobic polysiloxane or fluorine containing silicon compounds. The comparison of the different variants reveals that high wash-out stabilities were reached only by silica sols containing fluorine compoundsand hexadecylsilane additives. Therefore long-chain alkyltrialkoxysilane compounds could be used as substitutes for fluorine compounds for the surface modification of textiles in some practical applications.  相似文献   

10.
碱/酸两步催化法制备耐候性SiO2增透膜的研究   总被引:1,自引:1,他引:0  
以正硅酸乙酯(TEOS)为先驱体,采用碱/酸两步催化溶胶-凝胶法制备出一种兼具碱催化增透膜的高透过率和酸催化增透膜的良好耐摩擦性能的优点的SiO2增透膜。对酸碱催化SiO2相对比例及酸催化时水含量的系统研究表明,当酸催化SiO2的含量为50%时,增透膜综合性能最好,即具有高透过率和高耐摩擦性;当nH2O/nHCl=1∶0.0010时,增透膜的透过率最高。碱/酸两步催化法制备的增透膜与水的接触角仅为11.3°,本文进一步用六甲基二硅氧烷(HMDS)对增透膜表面进行了修饰,修饰后增透膜的接触角提高至52.5°,增透膜的疏水性及环境稳定性得到较大的提高。  相似文献   

11.
Deposition of silica thin films on silicon wafer was investigated by in situ mass measurements with a microbalance configured for dip coating. Mass change was recorded with respect to deposition time when the substrate was fully immersed in the silica sol. Mass gain during deposition was higher than predicted from monolayer coverage of silica nano particles. This implied that deposition was facilitated by gelling of the nanoparticles on the substrate. The rate of deposition was enhanced by increasing the particle concentration in the sol and by decreasing the particle size from 12 to 5 nm. Increasing the salt concentration of the silica sol at constant pH enhanced the deposition of the silica particles. Reducing the pH of the sol from 10 to 6 decreased the deposition rate due to aggregation of the primary silica particles.  相似文献   

12.
Hydrophobic silica sol coatings on textiles were investigated with respect to the influence of the solvents and the concentration of the sol. For this purpose, two silica sols, prepared with the hydrophobic additives octyltriethoxysilane and perfluoroctyltriethoxysilane were diluted by different solvents: water, ethanol and aceton.In case of using pure water for dilution, the hydrophobicity of coated textiles decreases drastically with increasing dilution of the applied sol. For coatings on polyester fabrics or mixed fabrics made from polyester and cotton, the use of the organic solvents ethanol or aceton leads to significant hydrophobicity even in case of strong dilution down to a sol concentration < 1%. The hydrophobic effect of coated polyamide textile is less. The reason for different hydrophobicity of coated textiles resulting from the use of water instead of organic solvents is explained by different surface morphologies of the coatings deposited on the textile fibres, as observed by REM. In case of using organic solvents the coatings contain a more flat morphology which covers the fibres completely. In contrast, sols with higher water content lead to less adhesive coatings with crack formation.The use of a combination of water with less inflammable organic solvents such as di(propylene glycol) n-propyl ether (DowanolTM DPnP) in hydrophobic silica sols yields textile coatings with good hydrophobicity, even in case of low sol concentration. For practical application of textile coatings, especially silica sols with high water content are of interest, due to less risk of inflammation and lower ecological impact. Therefore, the use of water diluted hydrophobic silica sols with small amounts of DPnP offers a chance for textile refinement by the sol–gel technique.  相似文献   

13.
Hydrophobic silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica, gelatin as the biopolymer counterpart and vinyltrimethoxysilane as the surface modifier through a sol–gel method. The precursor sol was coated on glass substrates and further investigated for the extent of chemical modification, thermal degradation, hydrophobicity, particle size and transparency in the UV-Visible region. Stereomicrographs clearly indicate the water repellent nature of the hybrid coatings with respect to a water drop. FTIR was used to follow the presence of vinyl groups that impart hydrophobicity to the resultant hybrids. By varying the concentration of functionalizing agent, the extent of hydrophobic property could been tailored. The optimum concentration for effective surface modification of the silica–gelatin hybrid is about 50 wt%. Nearly 100% optical transmittance was obtained for silica–VTMS–gelatin hybrid coatings on glass substrates and this may have potential applications in optical devices and also for transparent biocompatible hydrophobic coatings on biological substrates such as leather.  相似文献   

14.
Negatively charged silica sol is known to lead to fouling of anion exchange membranes during electrodialysis (ED) as a result of its deposition on the membrane surface. It is known that the fouling potential is related to the physical and electrochemical properties of the silica particles as well as those of the anion exchange membranes. In this study, the properties of the silica sol were characterized in terms of its particle size, turbidity, and zeta potential in order to predict their effects on the electrodialysis performance. In the stability of colloidal particles, the critical coagulation concentrations of silica sol were determined as functions of ionic strength, cation species, and solution pH. In the electrodialysis of NaCl solution containing silica sol with various concentrations of CaCl(2), the colloidal behavior related to deposition and transport was examined during and after electrodialysis. The electrodialysis experiments clearly showed that the deposition and transport of silica sol during electrodialysis were related to the colloidal stability of dispersion.  相似文献   

15.
We describe a new coating method Laminar Flow Coating (LFC) technique developed to obtain highly reflective (HR) laser damage resistant sol-gel multidielectric coatings. Such coatings are used in high-power lasers for inertial confinement fusion experiments (ICF). This technique uses substrates in an upside-down position and a travelling wave of coating solution is transported with a laminar motion under the substrate surface with a tubular dispense unit. This creates a thin-film coating by solvent evaporation. Satisfactory results have been obtained on 20-cm square glass substrates regarding the optical performances, the thickness uniformity, the edge-effects and the laser damage resistance. This deposition technique combines the advantages of both classical techniques: the non-exclusive substrate geometry such as in dip-coating and the small solution consumption such as in spin-coating.The association of sol-gel colloidal suspensions and LFC coating process has been demonstrated as a promising way to produce inexpensive specific optical coatings [1].  相似文献   

16.
在高强钢表面制备了防护性溶胶凝胶涂层,并研究了不同浓度二氧化硅纳米粒子的加入对于涂层形貌、耐蚀性和硬度的影响。采用扫描电子显微镜(SEM)和电子能谱(EDS)观察了涂层的微观结构和成分;采用显微硬度计测试了涂层的硬度;采用电化学方法研究了二氧化硅纳米粒子的浓度对于涂层耐蚀性能的影响;采用傅里叶红外光谱研究涂层的化学结构,进而探讨了二氧化硅纳米粒子对于涂层的强化机理。结果显示涂层加入二氧化硅纳米粒子的最佳浓度为500 mg.L-1,此条件下的涂层表面均匀致密,有较高的硬度并且在3.5%NaCl溶液中体现出较好的耐蚀作用。纳米粒子在溶胶中反应形成活性羟基基团并与硅烷发生反应生成空间网状结构,从而强化涂层。  相似文献   

17.
聚苯硫醚超疏水复合涂层的制备与性能   总被引:1,自引:0,他引:1  
利用工业原料聚苯硫醚微粉和疏水性二氧化硅纳米粉末,采用喷涂法在瓷砖表面制备了疏水复合涂层.研究了热处理温度、组分配比对涂层表面形貌、粗糙度和接触角的影响,发现随着热处理温度升高,涂层表面粗糙度增大,随着疏水性二氧化硅含量的增加,由于表面聚集的疏水性二氧化硅增多,涂层疏水性增强,在热处理温度为280℃、疏水性二氧化硅与聚苯硫醚质量比为1∶1时,可获得超疏水涂层,涂层的接触角大于150°,滚落角小于4°,pH值为1~14的水溶液在其表面都具有很高的接触角.超疏水涂层具有良好的自清洁效果,并且经落沙法实验测定,超疏水涂层耐刮伤性能良好.  相似文献   

18.
疏水增透SiO2膜的制备及其性能研究   总被引:6,自引:0,他引:6  
以正硅酸乙酯(TEOS)和二甲基二乙氧基硅烷(DDS)为前驱体,在碱催化体系中通过选择合适的原料配比以及对体系溶胶 凝胶过程的控制使DDS和TEOS的水解产物发生共缩聚反应,进而制备出改性的SiO2溶胶,并采用旋转镀膜法(spin coating)直接获得了同时具有良好疏水和增透性能的SiO2光学膜,克服了增透膜防潮性能差的缺点.同时采用透射电子显微镜(TEM)、粒度分布(SDP)等手段研究了不同条件下溶胶的性质及其对膜层性能的影响,并与未经改性的SiO2增透膜进行了比较,结果表明改性后的膜层不仅疏水性大大增加,且在相同镀膜条件下,膜层的厚度随着老化时间的延长增加较小,故其透过率曲线在300~800 nm范围内不易出现多个增透峰.  相似文献   

19.
The aluminium oxide films on austenitic steel are prepared from sols of re-dispersed boehmite nano powders in water. After dip-coating of the sol, a heat treatment including drying, calcination and annealing in vacuum at temperatures up to 1100°C is performed to obtain crack-free coatings of a thickness up to 6 μm. XRD measurements detect α- and γ-alumina, a TiOx-phase at the metal/coating interface and a gradient of phase formation in the coating. The strong adhesion on the substrates is due to the layered assembly and gradient composition of the coating caused by an inter-diffusion of metal cations and oxygen in the metal/oxide interface during heat treatment. Residual stress measurements by X-rays result in compressive stresses of 2–4 GPa in the alumina coatings. The pin-on-disc test shows a remarkable improvement of wear resistance obtained by sol-gel coatings. The α-alumina content and the compressive stress of the coatings correlate with wear resistance of the coatings.  相似文献   

20.
The fouling behavior of microstructured hollow fibers was investigated in constant flux filtrations of colloidal silica and sodium alginate. It was observed that the fouling resistance increases faster with structured fibers than with round fibers. Reversibility of structured fibers' fouling was similar during silica filtrations and better in sodium alginate filtrations when compared with round fibers. The deposition of two different silica sols on the membranes was observed by NMR imaging. The sols had different particle size and solution ionic strength and showed different deposition behaviors. For the smaller particle-sized sol in deionized solution (Ludox-TMA), there was more deposition within the grooves of the structured fibers and much less on the fins. For the alkali-stabilized sol Bindzil 9950, which had larger particles, the deposition was homogeneous across the surface of the structured fiber, and the thickness of the deposit was similar to that on the round fiber. This difference between the deposition behavior of the two sols is explained by differences in the back diffusion, which creates concentration polarization layers with different resistances. The Ludox sol formed a thick polarization layer with very low resistance. The Bindzil sol formed a slightly thinner polarization layer; however, its resistance was much higher, of similar magnitude as the intrinsic membrane resistance. This high resistance of the polarization layer during the Bindzil sol filtration is considered to lead to quick flow regulation toward equalizing the resistance along the fiber surface. The Ludox particles were trapped at the bottom of the grooves as a result of reduced back diffusion. The fouling behavior in sodium alginate filtrations was explained by considering the size-dependent deposition within the broad alginate size distribution. The better reversibility of fouling in the structured fibers is thought to be the result of a looser deposit within the grooves, which is more easily removed than a compressed deposit on the round fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号