首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Let {Xn}n≥1 be a sequence of independent and identically distributed random variables. For each integer n ≥ 1 and positive constants r, t, and ?, let Sn = Σj=1nXj and E{N(r, t, ?)} = Σn=1 nr?2P{|Sn| > ?nrt}. In this paper, we prove that (1) lim?→0+?α(r?1)E{N(r, t, ?)} = K(r, t) if E(X1) = 0, Var(X1) = 1, and E(| X1 |t) < ∞, where 2 ≤ t < 2r ≤ 2t, K(r, t) = {2α(r?1)2Γ((1 + α(r ? 1))2)}{(r ? 1) Γ(12)}, and α = 2t(2r ? t); (2) lim?→0+G(t, ?)H(t, ?) = 0 if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(|X1|t) < ∞, where G(t, ?) = E{N(t, t, ?)} = Σn=1nt?2P{| Sn | > ?n} → ∞ as ? → 0+ and H(t, ?) = E{N(t, t, ?)} = Σn=1 nt?2P{| Sn | > ?n2t} → ∞ as ? → 0+, i.e., H(t, ?) goes to infinity much faster than G(t, ?) as ? → 0+ if 2 < t < 4, E(X1) = 0, Var(X1) > 0, and E(| X1 |t) < ∞. Our results provide us with a much better and deeper understanding of the tail probability of a distribution.  相似文献   

2.
Let Xi be iidrv's and Sn=X1+X2+…+Xn. When EX21<+∞, by the law of the iterated logarithm (Snn)(n log n)12→0 a.s. for some constants αn. Thus the r.v. Y=supn?1[|Snn|?(δn log n)12]+ is a.s.finite when δ>0. We prove a rate of convergence theorem related to the classical results of Baum and Katz, and apply it to show, without the prior assumption EX21<+∞ that EYh<+∞ if and only if E|X1|2+h[log|X1|]-1<+∞ for 0<h<1 and δ> hE(X1?EX1)2, whereas EYh=+∞ whenever h>0 and 0<δ<hE(X1?EX1)2.  相似文献   

3.
In this note a functional central limit theorem for ?-mixing sequences of I. A. Ibragimov (Theory Probab. Appl.20 (1975), 135–141) is generalized to nonstationary sequences (Xn)nN, satisfying some assumptions on the variances and the moment condition E |Xn|2 + b = O(nb2??) for some b > 0, ? > 0.  相似文献   

4.
We show that if X is a finite CW-complex admitting a fixed point free involution then there is a singly graded spectral sequence with E11 ? H1(X;Z2) and E1∞ = 0. As an application we prove that for any n > 0 there is a natural number k(n) such that if n > k(n) and X is a homotopy RPn+kRPn, then X will not admit a fixed point free involution.  相似文献   

5.
The system ?x?t = Δx + F(x,y), ?y?t = G(x,y) is investigated, where x and y are scalar functions of time (t ? 0), and n space variables 1,…, ξn), Δx ≡ ∑i = 1n?2xi2, and F and G are nonlinear functions. Under certain hypotheses on F and G it is proved that there exists a unique spherically symmetric solution (x(r),y(r)), where r = (ξ12 + … + ξn2)12, which is bounded for r ? 0 and satisfies x(0) >x0, y(0) > y0, x′(0) = 0, y′(0) = 0, and x′ < 0, y′ > 0, ?r > 0. Thus, (x(r), y(r)) represents a time independent equilibrium solution of the system. Further, the linearization of the system restricted to spherically symmetric solutions, around (x(r), y(r)), has a unique positive eigenvalue. This is in contrast to the case n = 1 (i.e., one space dimension) in which zero is an eigenvalue. The uniqueness of the positive eigenvalue is used in the proof that the spherically symmetric solution described is unique.  相似文献   

6.
7.
It is known that the classical orthogonal polynomials satisfy inequalities of the form Un2(x) ? Un + 1(x) Un ? 1(x) > 0 when x lies in the spectral interval. These are called Turan inequalities. In this paper we will prove a generalized Turan inequality for ultraspherical and Laguerre polynomials. Specifically if Pnλ(x) and Lnα(x) are the ultraspherical and Laguerre polynomials and Fnλ(x) = Pnλ(x)Pnλ(1), Gnα(x) = Lnα(x)Lnα(0), then Fnα(x) Fnβ(x) ? Fn + 1α(x) Fn ? 1β(x) > 0, ? 1 < x < 1, ?12 < α ? β ? α + 1 and Gnα(x) Gnβ(x) ? Gn + 1α(x) Gn ? 1β(x) > 0, x > 0, 0 < α ? β ? α + 1. We also prove the inequality (n + 1) Fnα(x) Fnβ(x) ? nFn + 1α(x) Fn ? 1β(x) > An[Fnα(x)]2, ?1 < x < 1, ?12 < α ? β < α + 1, where An is a positive constant depending on α and β.  相似文献   

8.
Let {Xn, n ≥ 1} be a real-valued stationary Gaussian sequence with mean zero and variance one. Let Mn = max{Xt, in} and Hn(t) = (M[nt] ? bn)an?1 be the maximum resp. the properly normalised maximum process, where cn = (2 log n)12, an = (log log n)cn and bn = cn ? 12(log(4π log n))cn. We characterize the almost sure limit functions of (Hn)n≥3 in the set of non-negative, non-decreasing, right-continuous, real-valued functions on (0, ∞), if r(n) (log n)3?Δ = O(1) for all Δ > 0 or if r(n) (log n)2?Δ = O(1) for all Δ > 0 and r(n) convex and fulfills another regularity condition, where r(n) is the correlation function of the Gaussian sequence.  相似文献   

9.
Let {Xt, t ≥ 0} be Brownian motion in Rd (d ≥ 1). Let D be a bounded domain in Rd with C2 boundary, ?D, and let q be a continuous (if d = 1), Hölder continuous (if d ≥ 2) function in D?. If the Feynman-Kac “gauge” Ex{exp(∝0τDq(Xt)dt)1A(XτD)}, where τD is the first exit time from D, is finite for some non-empty open set A on ?D and some x?D, then for any ? ? C0(?D), φ(x) = Ex{exp(∝0τDq(Xt)dt)?(XτD)} is the unique solution in C2(D) ∩ C0(D?) of the Schrödinger boundary value problem (12Δ + q)φ = 0 in D, φ = ? on ?D.  相似文献   

10.
In this paper we study the linked nonlinear multiparameter system
yrn(Xr) + MrYr + s=1k λs(ars(Xr) + Prs) Yr(Xr) = 0, r = l,…, k
, where xr? [ar, br], yr is subject to Sturm-Liouville boundary conditions, and the continuous functions ars satisfy ¦ A ¦ (x) = detars(xr) > 0. Conditions on the polynomial operators Mr, Prs are produced which guarantee a sequence of eigenfunctions for this problem yn(x) = Πr=1kyrn(xr), n ? 1, which form a basis in L2([a, b], ¦ A ¦). Here [a, b] = [a1, b1 × … × [ak, bk].  相似文献   

11.
Let {Xn} be a stationary Gaussian sequence with E{X0} = 0, {X20} = 1 and E{X0Xn} = rnn Let cn = (2ln n)built12, bn = cn? 12c-1n ln(4π ln n), and set Mn = max0 ?k?nXk. A classical result for independent normal random variables is that
P[cn(Mn?bn)?x]→exp[-e-x] as n → ∞ for all x.
Berman has shown that (1) applies as well to dependent sequences provided rnlnn = o(1). Suppose now that {rn} is a convex correlation sequence satisfying rn = o(1), (rnlnn)-1 is monotone for large n and o(1). Then
P[rn-12(Mn ? (1?rn)12bn)?x] → Ф(x)
for all x, where Ф is the normal distribution function. While the normal can thus be viewed as a second natural limit distribution for {Mn}, there are others. In particular, the limit distribution is given below when rn is (sufficiently close to) γ/ln n. We further exhibit a collection of limit distributions which can arise when rn decays to zero in a nonsmooth manner. Continuous parameter Gaussian processes are also considered. A modified version of (1) has been given by Pickands for some continuous processes which possess sufficient asymptotic independence properties. Under a weaker form of asymptotic independence, we obtain a version of (2).  相似文献   

12.
Let {Xi, i?0} be a sequence of independent identically distributed random variables with finite absolute third moment. Then Darling and Erdös have shown that
for -∞<t<∞ where μn = max0?k?n k-12ki=0xi and Xn = (2 ln ln n)12. The result is extended to dependent sequences but assuming that {Xi} is a standard stationary Gaussian sequence with covariance function {ri}. When {Xi} is moderately dependent (e.g. when v(∑ni=1Xi) ? na, 0 < a < 2) we get
where Ha is a constant. In the strongly dependent case (e.g. when v(∑ni=1Xi) ? n2r(n)) we get
for-∞<t<∞.  相似文献   

13.
Given a polynomial P(X1,…,XN)∈R[X], we calculate a subspace Gp of the linear space 〈X〉 generated by the indeterminates which is minimal with respect to the property P∈R[Gp] (the algebra generated by Gp, and prove its uniqueness. Furthermore, we use this result to characterize the pairs (P,Q) of polynomials P(X1,…,Xn) and Q(X1,…,Xn) for which there exists an isomorphism T:X〉 →〈X〉 that “separates P from Q,” i.e., such that for some k(1<k<n) we can write P and Q as P1(Y1,…,Yk) and Q1(Yk+1,…,Yn) respectively, where Y=TX.  相似文献   

14.
{Xn,n?1} are i.i.d. random variables with continuous d.f. F(x). Xj is a record value of this sequence if Xj>max{X1,…,Xj?1}. Consider the sequence of such record values {XLn,n?1}. Set R(x)=-log(1?F(x)). There exist Bn > 0 such that XLnBn→1. in probability (i.p.) iff XLnR-1(n)→1 i.p. iff {R(kx)?R(x)}R12(kx) → ∞ as x→∞ for all k>1. Similar criteria hold for the existence of constants An such that XLn?An → 0 i.p. Limiting record value distributions are of the form N(-log(-logG(x))) where G(·) is an extreme value distribution and N(·) is the standard normal distribution. Domain of attraction criteria for each of the three types of limit laws can be derived by appealing to a duality theorem relating the limiting record value distributions to the extreme value distributions. Repeated use is made of the following lemma: If P{Xn?x}=1?e-x,x?0, then XLn=Y0+…+Yn where the Yj's are i.i.d. and P{Yj?x}=1?e-x.  相似文献   

15.
Let X be a Banach space, let B be the generator of a continuous group in X, and let A = B2. Assume that D(Ar) is dense in X for r an arbitrarily large positive integer and that a and b are non-negative reals. Solution representations are developed for the abstract differential equation
(D2t + bt Dt ? A) · (D2t + at Dt ? A) u(t) = 0, t > 0
corresponding to initial conditions of the form: (i) u(0+) = φ, u(j)(0+) = 0, j = 1, 2, 3 and (ii) u2(0+) = φ, uj(0+) = 0, j = 0, 1, 3 (with φD(Ar)) for all choices of a and b.  相似文献   

16.
Let Fn(x) be the empirical distribution function based on n independent random variables X1,…,Xn from a common distribution function F(x), and let X = Σi=1nXin be the sample mean. We derive the rate of convergence of Fn(X) to normality (for the regular as well as nonregular cases), a law of iterated logarithm, and an invariance principle for Fn(X).  相似文献   

17.
Let A(x,ε) be an n×n matrix function holomorphic for |x|?x0, 0<ε?ε0, and possessing, uniformly in x, an asymptotic expansion A(x,ε)?Σr=0Ar(x) εr, as ε→0+. An invertible, holomorphic matrix function P(x,ε) with an asymptotic expansion P(x,ε)?Σr=0Pr(x)εr, as ε→0+, is constructed, such that the transformation y = P(x,ε)z takes the differential equation εhdydx = A(x,ε)y,h a positive integer, into εhdzdx = B(x,ε)z, where B(x,ε) is asymptotically equal, to all orders, to a matrix in a canonical form for holomorphic matrices due to V.I. Arnold.  相似文献   

18.
The probability measure of X = (x0,…, xr), where x0,…, xr are independent isotropic random points in Rn (1 ≤ rn ? 1) with absolutely continuous distributions is, for a certain class of distributions of X, expressed as a product measure involving as factors the joint probability measure of (ω, ?), the probability measure of p, and the probability measure of Y1 = (y01,…, yr1). Here ω is the r-subspace parallel to the r-flat η determined by X, ? is a unit vector in ω with ‘initial’ point at the origin [ω is the (n ? r)-subspace orthocomplementary to ω], p is the norm of the vector z from the origin to the orthogonal projection of the origin on η, and yi1 = (xi ? z)α(p2), where α is a scale factor determined by p. The probability measure for ω is the unique probability measure on the Grassmann manifold of r-subspaces in Rn invariant under the group of rotations in Rn, while the conditional probability measure of ? given ω is uniform on the boundary of the unit (n ? r)-ball in ω with centre at the origin. The decomposition allows the evaluation of the moments, for a suitable class of distributions of X, of the r-volume of the simplicial convex hull of {x0,…, xr} for 1 ≤ rn.  相似文献   

19.
Let H = ?Δ + V, where the potential V is spherically symmetric and can be decomposed as a sum of a short-range and a long-range term, V(r) = VS(r) + VL. Let λ = lim supr→∞VL(r) < ∞ (we allow λ = ? ∞) and set λ+ = max(λ, 0). Assume that for some r0, VL(r) ?C2k(r0, ∞) and that there exists δ > 0 such that (ddr)jVL(r) · (λ+ ? VL(r) + 1)?1 = O(r?jδ), j = 1,…, 2k, as r → ∞. Assume further that 1(dr¦ VL(r)¦12) = ∞ and that 2 > 1. It is shown that: (a) The restriction of H to C(Rn) is essentially self-adjoint, (b) The essential spectrum of H contains the closure of (λ, ∞). (c) The part of H over (λ, ∞) is absolutely continuous.  相似文献   

20.
In this paper we obtain a growth relation for entire functions of qth order with respect to the distribution of its zeros. We also derive certain relations between the qth convergence exponents of two or more entire functions. The most striking result of the paper is: If f(z) has at least one zero, then
lim supr→∞log n(r)log[q+1]r=?(q)
, where n(r) is the number of zeros of f(z) in ¦z¦ ? r and
?(q)=g.l.b.α:α>0 and n=1(log[q]rn)<∞
.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号