首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper investigates proportional and excess-loss reinsurance contracts in a continuous-time principal–agent framework, in which the insurer is the agent and the reinsurer is the principal. Insurance claims follow the classic Cramér–Lundberg process. The insurer believes that the claim intensity is uncertain and he chooses robust risk retention levels to maximize the penalty-dependent multiple-priors utility. The reinsurer designs reinsurance contracts subject to the insurer’s incentive compatibility constraints. The analytical expressions of the two robust reinsurance contracts are derived. Our results show that the robust reinsurance demand and price are greater than their respective standard values without model ambiguity, and increase as the insurer’s ambiguity aversion increases. Moreover, the reinsurer specifies a decreasing reinsurance price to induce increasing demand over time. Specifically, the price of excess-loss reinsurance is higher, relative to that of proportional reinsurance. Further, only if the insurer’s risk aversion is high or the reinsurer’s risk aversion is low, the insurer prefers the excess-loss reinsurance contract.  相似文献   

2.
In this paper, we study a robust optimal investment and reinsurance problem for a general insurance company which contains an insurer and a reinsurer. Assume that the claim process described by a Brownian motion with drift, the insurer can purchase proportional reinsurance from the reinsurer. Both the insurer and the reinsurer can invest in a financial market consisting of one risk-free asset and one risky asset whose price process is described by the Heston model. Besides, the general insurance company’s manager will search for a robust optimal investment and reinsurance strategy, since the general insurance company faces model uncertainty and its manager is ambiguity-averse in our assumption. The optimal decision is to maximize the minimal expected exponential utility of the weighted sum of the insurer’s and the reinsurer’s surplus processes. By using techniques of stochastic control theory, we give sufficient conditions under which the closed-form expressions for the robust optimal investment and reinsurance strategies and the corresponding value function are obtained.  相似文献   

3.
In this paper we consider an investment problem by an insurance firm. As in the classical model of collective risk, it is assumed that premium payments are received deterministically from policyholders at a constant rate, while the claim process is determined by a compound Poisson process. We introduce a conversion mechanism of funds from cash into investments and vice versa. Contrary to the conventional collective risk model we do not assume a ruin barrier. Instead we introduce conversion costs to account for the problems implicit in reaching the zero boundary. The objective of the firm is to maximize its net profit by selecting an appropriate investment strategy. A diffusion approximation is suggested in order to obtain tractable results for a general claim size distribution.  相似文献   

4.
The present paper studies time-consistent solutions to an investment-reinsurance problem under a mean-variance framework.The paper is distinguished from other literature by taking into account the interests of both an insurer and a reinsurer jointly.The claim process of the insurer is governed by a Brownian motion with a drift.A proportional reinsurance treaty is considered and the premium is calculated according to the expected value principle.Both the insurer and the reinsurer are assumed to invest in a risky asset,which is distinct for each other and driven by a constant elasticity of variance model.The optimal decision is formulated on a weighted sum of the insurer’s and the reinsurer’s surplus processes.Upon a verification theorem,which is established with a formal proof for a more general problem,explicit solutions are obtained for the proposed investment-reinsurance model.Moreover,numerous mathematical analysis and numerical examples are provided to demonstrate those derived results as well as the economic implications behind.  相似文献   

5.
The problem of optimal excess of loss reinsurance with a limiting and a retention level is considered. It is demonstrated that this problem can be solved, combining specific risk and performance measures, under some relatively general assumptions for the risk model, under which the premium income is modelled by any non-negative, non-decreasing function, claim arrivals follow a Poisson process and claim amounts are modelled by any continuous joint distribution. As a performance measure, we define the expected profits at time x of the direct insurer and the reinsurer, given their joint survival up to x, and derive explicit expressions for their numerical evaluation. The probability of joint survival of the direct insurer and the reinsurer up to the finite time horizon x is employed as a risk measure. An efficient frontier type approach to setting the limiting and the retention levels, based on the probability of joint survival considered as a risk measure and on the expected profit given joint survival, considered as a performance measure is introduced. Several optimality problems are defined and their solutions are illustrated numerically on several examples of appropriate claim amount distributions, both for the case of dependent and independent claim severities.  相似文献   

6.
In a reinsurance contract, a reinsurer promises to pay the part of the loss faced by an insurer in exchange for receiving a reinsurance premium from the insurer. However, the reinsurer may fail to pay the promised amount when the promised amount exceeds the reinsurer’s solvency. As a seller of a reinsurance contract, the initial capital or reserve of a reinsurer should meet some regulatory requirements. We assume that the initial capital or reserve of a reinsurer is regulated by the value-at-risk (VaR) of its promised indemnity. When the promised indemnity exceeds the total of the reinsurer’s initial capital and the reinsurance premium, the reinsurer may fail to pay the promised amount or default may occur. In the presence of the regulatory initial capital and the counterparty default risk, we investigate optimal reinsurance designs from an insurer’s point of view and derive optimal reinsurance strategies that maximize the expected utility of an insurer’s terminal wealth or minimize the VaR of an insurer’s total retained risk. It turns out that optimal reinsurance strategies in the presence of the regulatory initial capital and the counterparty default risk are different both from optimal reinsurance strategies in the absence of the counterparty default risk and from optimal reinsurance strategies in the presence of the counterparty default risk but without the regulatory initial capital.  相似文献   

7.
Recently, Escudero and Ortega (Insur. Math. Econ. 43:255–262, 2008) have considered an extension of the largest claims reinsurance with arbitrary random retention levels. They have analyzed the effect of some dependencies on the Laplace transform of the retained total claim amount. In this note, we study how dependencies influence the variability of the retained and the reinsured total claim amount, under excess-loss and stop-loss reinsurance policies, with stochastic retention levels. Stochastic directional convexity properties, variability orderings, and bounds for the retained and the reinsured total risk are given. Some examples on the calculation of bounds for stop-loss premiums (i.e., the expected value of the reinsured total risk under this treaty) and for net premiums for the cedent company under excess-loss, and complementary results on convex comparisons of discounted values of benefits for the insurer from a portfolio with risks having random policy limits (deductibles) are derived.   相似文献   

8.
We study optimal reinsurance in the framework of stochastic Stackelberg differential game, in which an insurer and a reinsurer are the two players, and more specifically are considered as the follower and the leader of the Stackelberg game, respectively. An optimal reinsurance policy is determined by the Stackelberg equilibrium of the game, consisting of an optimal reinsurance strategy chosen by the insurer and an optimal reinsurance premium strategy by the reinsurer. Both the insurer and the reinsurer aim to maximize their respective mean–variance cost functionals. To overcome the time-inconsistency issue in the game, we formulate the optimization problem of each player as an embedded game and solve it via a corresponding extended Hamilton–Jacobi–Bellman equation. It is found that the Stackelberg equilibrium can be achieved by the pair of a variance reinsurance premium principle and a proportional reinsurance treaty, or that of an expected value reinsurance premium principle and an excess-of-loss reinsurance treaty. Moreover, the former optimal reinsurance policy is determined by a unique, model-free Stackelberg equilibrium; the latter one, though exists, may be non-unique and model-dependent, and depend on the tail behavior of the claim-size distribution to be more specific. Our numerical analysis provides further support for necessity of integrating the insurer and the reinsurer into a unified framework. In this regard, the stochastic Stackelberg differential reinsurance game proposed in this paper is a good candidate to achieve this goal.  相似文献   

9.
Borch (1969) advocated that the study of optimal reinsurance design should take into consideration the conflicting interests of both an insurer and a reinsurer. Motivated by this and exploiting a Bowley solution (or Stackelberg equilibrium game), this paper proposes a two-step model that tackles an optimal risk transfer problem between the insurer and the reinsurer. From the insurer’s perspective, the first step of the model provisionally derives an optimal reinsurance policy for a given reinsurance premium while reflecting the reinsurer’s risk appetite. The reinsurer’s risk appetite is controlled by imposing upper limits on the first two moments of the coverage. Through a comparative analysis, the effect of the insurer’s initial wealth on the demand for reinsurance is then examined, when the insurer’s risk aversion and prudence are taken into account. Based on the insurer’s provisional strategy, the second step of the model determines the monopoly premium that maximizes the reinsurer’s expected profit while still satisfying the insurer’s incentive condition. Numerical examples are provided to illustrate our Bowley solution.  相似文献   

10.
This article makes use of the well-known Principal–Agent (multidimensional screening) model commonly used in economics to analyze a monopolistic reinsurance market in the presence of adverse selection, where the risk preference of each insurer is guided by its concave distortion risk measure of the terminal wealth position; while the reinsurer, under information asymmetry, aims to maximize its expected profit by designing an optimal policy provision (menu) of “shirt-fit” stop-loss reinsurance contracts for every insurer of either type of low or high risk. In particular, the most representative case of Tail Value-at-Risk (TVaR) is further explored in detail so as to unveil the underlying insight from economics perspective.  相似文献   

11.
This paper studies the optimal risk-sharing between an insurer and a reinsurer. The insurer purchases reinsurance for risk-control and decides her retention level with an objective to minimize her ruin probability. The reinsurer has control over the reinsurance price and aims to maximize her expected discounted profits up to the time when the insurer goes bankrupt. In a stochastic differential game-theoretic framework, we determine the insurer’s optimal reinsurance strategy and specify the reinsurance contract by solving a system of coupled Hamilton–Jacobi–Bellman equations. We obtain explicit solutions for the game problem when both the insurance and the reinsurance premiums are calculated according to the standard-deviation principle or the expected value principle, respectively. Our results show that, depending on the model parameters, the reinsurance contract is either provided with a peak price when the insurer has sufficient cash reserve and with a minimum price when otherwise, or is always provided with a peak price. We also perform some numerical analyses and provide economic interpretations for the results.  相似文献   

12.
This article studies the optimal proportional reinsurance and investment problem under a constant elasticity of variance(CEV) model.Assume that the insurer’s surplus process follows a jump-diffusion process,the insurer can purchase proportional reinsurance from the reinsurer via the variance principle and invest in a risk-free asset and a risky asset whose price is modeled by a CEV model.The diffusion term can explain the uncertainty associated with the surplus of the insurer or the additional small claims.The objective of the insurer is to maximize the expected exponential utility of terminal wealth.This optimization problem is studied in two cases depending on the diffusion term’s explanation.In all cases,by using techniques of stochastic control theory,closed-form expressions for the value functions and optimal strategies are obtained.  相似文献   

13.
We propose a model for reinsurance control for an insurance firm in the case where the liabilities are driven by fractional Brownian motion, a stochastic process exhibiting long-range dependence. The problem is transformed to a nonlinear programming problem, the solution of which provides the optimal reinsurance policy. The effect of various parameters of the model, such as the safety loading of the reinsurer and the insurer, the Hurst parameter, etc. on the optimal reinsurance program is studied in some detail. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
周勇  候震梅  刘三阳 《经济数学》2005,22(4):356-362
讨论了具有内部竞争的保险公司的风险管理问题,保险公司的目标是:保险公司用于(股东)分红的净收益的期望现值最大。根据B e llm an最优性原理,得出了分红情况下的B e llm an偏微分方程,通过对所得方程的分析给出了解析解和最有控制策略。  相似文献   

15.
Peng Yang 《Optimization》2017,66(5):737-758
This paper study an optimal time-consistent reinsurance-investment strategy selection problem in a financial market with jump-diffusion risky asset, where the insurance risk model is modulated by a compound Poisson process. The aggregate claim process and the price process of risky asset are correlated by a common Poisson process. The objective of the insurer is to choose an optimal time-consistent reinsurance-investment strategy so as to maximize the expected terminal surplus while minimizing the variance of the terminal surplus. Since this problem is time-inconsistent, we attack it by placing the problem within a game theoretic framework and looking for subgame perfect Nash equilibrium strategy. We investigate the problem using the extended Hamilton–Jacobi–Bellman dynamic programming approach. Closed-form solutions for the optimal reinsurance-investment strategy and the corresponding value functions are obtained. Numerical examples and economic significance analysis are also provided to illustrate how the optimal reinsurance-investment strategy changes when some model parameters vary.  相似文献   

16.
李辰  李效虎 《数学研究》2013,(4):351-366
为了避免由高理赔额造成的违约,保险公司通常通过签订再保合约将一部分风险转移给再保险公司.近年来对最优再保策略的研究着眼于最小化自留损失的方差,保险公司总风险的value-at-risk或conditional tail expectation.本文研究了在expected shortfall准则下的再保策略.我们给出了最优的增凸转移损失函数,并分别讨论了有无保费限制的情形.  相似文献   

17.
In this paper, we study the problem of optimal investment and proportional reinsurance coverage in the presence of inside information. To be more precise, we consider two firms: an insurer and a reinsurer who are both allowed to invest their surplus in a Black–Scholes‐type financial market. The insurer faces a claims process that is modeled by a Brownian motion with drift and has the possibility to reduce the risk involved with this process by purchasing proportional reinsurance coverage. Moreover, the insurer has some extra information at her disposal concerning the future realizations of her claims process, available from the beginning of the trading interval and hidden from the reinsurer, thus introducing in this way inside information aspects to our model. The optimal investment and proportional reinsurance decision for both firms is determined by the solution of suitable expected utility maximization problems, taking into account explicitly their different information sets. The solution of these problems also determines the reinsurance premia via a partial equilibrium approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
本文在扩散逼近风险模型下考虑保险公司和再保险公司之间的停止损失再保险策略选择博弈问题.假设保险公司和再保险公司都以期望终端盈余效用增加作为购买停止损失再保险和接受承保的条件.在保险公司和再保险公司都具有指数效用函数条件下,运用动态规划原理,通过求解其对应的Hamilton-Jacobi-Bellman方程,得到了三种博...  相似文献   

19.
Numerous researchers have applied the martingale approach for models driven by Levy processes to study optimal investment problems. This paper considers an insurer who wants to maximize the expected utility of terminal wealth by selecting optimal investment and proportional reinsurance strategies. The insurer's risk process is modeled by a Levy process and the capital can be invested in a security market described by the standard Black-Scholes model. By the martingale approach, the closed-form solutions to the problems of expected utility maximization are derived. Numerical examples are presented to show the impact of model parameters on the optimal strategies.  相似文献   

20.
In this paper, we study an insurer’s reinsurance–investment problem under a mean–variance criterion. We show that excess-loss is the unique equilibrium reinsurance strategy under a spectrally negative Lévy insurance model when the reinsurance premium is computed according to the expected value premium principle. Furthermore, we obtain the explicit equilibrium reinsurance–investment strategy by solving the extended Hamilton–Jacobi–Bellman equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号