首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein adsorption is fundamental to thrombosis and to the design of biocompatible materials. We report a two-dimensional electrophoresis and mass spectrometry study to characterize multiple human plasma proteins adsorbed onto four different types of model surfaces: silicon oxide, dextranized silicon, polyurethane and dextranized polyurethane. Dextran was grafted onto the surfaces of silicon and polyurethane to mimic the blood-contacting endothelial cell glycocalyx surface. Surface topography and hydrophobicity/hydrophilicity were determined and analyzed using atomic force microscopy and water contact angle measurements, respectively. Using two-dimensional electrophoresis, we show that, relative to the unmodified surfaces, dextranization significantly inhibits the adsorption of several human plasma proteins including IGHG1 protein, fibrinogen, haptoglobin, Apo A-IV, Apo A-I, immunoglobulin, serum retinal-binding protein and truncated serum albumin. We further demonstrate the selectivity of plasma protein adsorbed onto the different functionalized surfaces and the potential to control and manipulate proteins adsorption on the surfaces of medical devices, implants and microfluidic devices. This result shows that adsorption experiments using a single protein or a binary mixture of proteins are consistent with competitive protein adsorption studies. In summary, these studies indicate that coating blood-contacting biomedical applications with dextran is an effective route to reduce thrombo-inflammatory responses and to surface-direct biological activities.  相似文献   

2.
The sorption of the plasma proteins human serum albumin (HSA) and human fibrinogen (FIB) onto hemodialytic cellulosic substrates was investigated by the surface sensitive ATR-FTIR-spectroscopy. By means of this method we monitored the protein sorption kinetics onto acetylated and unmodified cellulose (AKZO-NOBEL). Furthermore, secondary structure alterations of the adsorbed proteins as well as changes of the composition in sorbed layers consisting of two proteins were detected. These findings were compared with results of the zeta potential and contact angle measurements on comparable sorption experiments.  相似文献   

3.
细胞相容性聚氨酯的合成及其细胞相容性研究   总被引:6,自引:0,他引:6  
在紫外光和过氧化氢的共同作用下,过氧化氢基团被引人到聚氨酯膜(PU)表面.将丙烯酸羟乙酯(HEA)吸附于氧化后的PU膜表面,在紫外光下实现了膜表面的接枝,并考察了接枝膜的表面性能.人体脐带静脉内皮细胞粘附和生长的研究表明,HEA接枝后的PU表面细胞粘附率显著提高,细胞的生长速率加快,增值率提高.  相似文献   

4.
Adsorption of protein from saliva on hydroxyapatite was compared with adsorption of several typical proteins with different electric charges, i.e. lysozyme, human serum albumin, β-lactoglobulin and ovalbumin. Adsorbed amounts of these proteins were determined and electrophoretic mobilities of protein-covered hydroxyapatite particles were measured, at different values for the adsorbed mass and, therefore, at various degrees of surface coverage. Also, adsorption kinetics were investigated by streaming potential measurements of a hydroxyapatite surface in contact with a protein solution, allowing monitoring of changes in the zeta-potential of the protein-covered hydroxyapatite surface in real time. The adsorbed amounts show that, as compared to most of the other proteins, the saliva proteins have remarkably low adsorption affinity. The measured values for the electrophoretic mobilities indicate that the positively charged proteins in the saliva mixture preferentially adsorb onto the negatively charged hydroxyapatite surface; this is most pronounced at low protein concentration in solution (i.e. at low coverage of the surface by the protein). Preferential uptake of the positively charged saliva proteins during the initial stages of the adsorption process is also concluded from the results of the kinetics experiments. Preferential adsorption of positive proteins is somewhat suppressed by the presence of Ca2+ ions in the medium. The results suggest that an acquired pellicle on a tooth in an oral environment contains a significant fraction of positively charged proteins. The positively charged proteins in the pellicle reduce the zeta-potential at the tooth surface to low values; consequently, electrostatic forces are expected to play only a minor role in the interaction with other components (e.g. bacterial cells).  相似文献   

5.
The biodistribution of colloidal carriers after their administration in vivo depends on the adsorption of some plasma proteins and apolipoproteins on their surface. Poly(methoxypolyethyleneglycol cyanoacrylate-co-hexadecylcyanoacrylate) (PEG-PHDCA) nanoparticles have demonstrated their capacity to cross the blood-brain barrier (BBB) by a mechanism of endocytosis. In order to clarify this mechanism at the molecular level, proteins and especially apolipoproteins adsorbed at the surface of PEG-PHDCA nanoparticles were analyzed by complementary methods such as CE and Protein Lab-on-chip in comparison with 2-D PAGE as a method of reference. Thus, the ability of those methodologies to identify and quantify human and rat plasma protein adsorption onto PEG-PHDCA nanoparticles and conventional PHDCA nanoparticles was evaluated. The lower adsorption of proteins onto PEG-PHDCA nanoparticles comparatively to PHDCA nanoparticles was evidenced by 2-D PAGE and Protein Lab-on-chip methods. CE allowed the quantification of adsorbed proteins without the requirement of a desorption procedure but failed, in this context, to analyze complex mixtures of proteins. The Protein Lab-on-chip method appeared to be very useful to follow the kinetic of protein adsorption from serum onto nanoparticles; it was complementary to 2-D PAGE which allowed the identification (with a relative quantification) of the adsorbed proteins. The overall results suggest the implication of the apolipoprotein E in the mechanism of passage of PEG-PHDCA nanoparticles through the BBB.  相似文献   

6.
Direct analysis of proteins adsorbed onto the surface of nylon membranes has been performed at the picomole level by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Nylon-66 and positive charge-modified nylon (Zetabind) membranes fixed to MALDI probe tips were successfully employed to analyze picomole quantities of sample that were adsorbed onto these inert supports prior to adding a matrix-containing solution. Proteins and peptides are readily solubilized from these types of membrane with conventional matrix solvents and cocrystallize with the matrix on the membrane surface. Because solubilization of membrane-adsorbed protein is necessary for successful sample preparation, nylon membranes are more suitable for use with MALDI-MS than other protein transfer membranes such as polyvinylidene difluoride or nitrocellulose. When compared to samples prepared conventionally, no apparent loss of sensitivity or resolution is observed when analysis by MALDI-MS is performed from nylon-66 or positive charge-modified nylon membranes. Detection limits and resolution are not apparently affected by the membrane immobilization/washing procedure, and no change in the mass accuracy is observed when analysis is performed on the nylon surface. However, there is a time shift (increase) in ion flight time when analysis by MALDI-time-of-flight-MS is performed directly from the membrane fixed to the probe tip (about 200 ns for an ion of mass 379.3). To maintain mass accuracy, the use of internal standards or external calibration performed on a membrane support was necessary. The immobilization of proteins on nylon membranes can be used to facilitate removal of water-soluble contaminants because the sample is retained when the membrane is immersed in water prior to adding the matrix solution. The feasibility of performing both chemical and enzymatic modifications of proteins adsorbed onto inert nylon supports prior to analysis by MALDi-MS is also demonstrated.  相似文献   

7.
碱性蛋白质毛细管电泳分离研究   总被引:1,自引:0,他引:1  
碱性蛋白质毛细管电泳分离研究任吉存,邓延倬,程介克(武汉大学化学系分析测试科学系,武汉,430072)关键词毛细管电泳,碱性蛋白质,吸附,精氨酸,赖氨酸蛋白质的吸附作用严重影响了毛细管电泳分离蛋白质的重现性[1].为此,人们寻找各种途径来克服蛋白质的...  相似文献   

8.
The adsorption of molecules onto a specially designed polymer surface is a new sample preparation technique for 252Cf-plasma desorption mass spectrometry (252Cf-PDMS) where an analyte is adsorbed from a solution onto the surface of a thin film that has been modified to have a particular attraction for the analyte. The adsorbed layer is directly analyzed by 252Cf-PDMS. Mass spectra of pepsin (mol. wt. 35 000) adsorbed onto nitrocellulose and highly-charged heparin fragments adsorbed onto an immobilized cationic surfactant film are some of the recent applications to difficult analytical problems.  相似文献   

9.
Structure, Stability, and Activity of Adsorbed Enzymes   总被引:1,自引:0,他引:1  
A proteolytic enzyme, α-chymotrypsin, and a lipolytic enzyme, cutinase, were adsorbed from aqueous solution onto a hydrophobic Teflon surface and a hydrophilic silica surface. We investigated the influence of adsorption on the structure, the structure thermal stability and the activity of these enzymes. Probing the protein structure by circular dichroism spectroscopy indicates that Teflon promotes the formation of helical structure in α-chymotrypsin, but the reverse effect is found with cutinase. The perturbed protein structures on Teflon are remarkably stable, showing no heat-induced structural transitions up to 100°C, as monitored by differential scanning calorimetry. Contact with the hydrophilic silica surface leads to a loss in the helix content of both proteins. Differential scanning calorimetry points to a heterogeneous population of adsorbed protein molecules with respect to their conformational states. The fraction of the native-like conformation in the adsorbed layer increases with increasing coverage of the silica surface by the proteins. The specific enzymatic activity in the adsorbed state qualitatively correlates with the fraction of proteins in the native-like conformation.  相似文献   

10.
Adsorption of albumin and IgG to porous and smooth titanium   总被引:1,自引:0,他引:1  
The possibility to load submicrometer porous titanium surfaces with relatively small proteins, albumin and immunoglobulin G (IgG) was investigated. The loading ability is of interest due to the possibility of slow release of molecules from biomaterial surfaces, and may be important for the manipulation of wound healing around prostheses. Iodine-125 (125I) labeled albumin and IgG were adsorbed onto smooth and to porous titanium with a pore diameter of 200-300 nm. The smooth and porous surfaces were divided into three groups: hydrophilic, hydrophobic, or to amine-terminated silane (3-aminopropyltriethoxysilane) that bound proteins via glutaraldehyde. The protein solution pH and protein concentrations were varied, and the adsorption experiments made without or in the presence of calcium and magnesium ions. The adsorbed amounts were quantified with a gamma counter. Two to eleven times more proteins adsorbed onto porous than smooth surfaces and the adsorbed amounts increased with increasing protein concentration (0.1-10 mg/ml) during a constant incubation time. The elutability by sodium dodecyl sulphate (SDS) was incomplete on porous surfaces.  相似文献   

11.
A simple and straightforward method for discovery and quantification of proteins adsorbed onto delicate and sensitive membrane surfaces is presented. The adsorbed proteins were enzymatically cleaved while still adsorbed onto the membranes using an on-surface enzymatic digestion (oSED). This was followed by isobaric tagging, nanoliquid chromatography, and tandem mass spectrometry. Protein adsorption on tri-block copolymer Poloxamer 407 surface-modified microdialysis (MD) membranes were compared with protein adsorption on unmodified MD membranes. Ventricular cerebrospinal fluid (vCSF) kept at 37 °C was used as sample matrix. In total, 19 proteins were quantified in two biological replicates. The surface-modified membranes adsorbed 33% less proteins than control membranes and the most abundant proteins were subunits of hemoglobin and clusterin. The adsorption of clusterin on the modified membranes was on average 36% compared to control membranes. The most common protein in vCSF, Albumin, was not identified adsorbed to the surface at all. It was also experimentally verified that oSED, in conjunction with tandem mass spectrometry can be used to quantify femtomole amounts of proteins adsorbed on limited and delicate surfaces, such as MD membranes. The method has great potential and can be used to study much more complex protein adsorption systems than previously reported.  相似文献   

12.
In this paper two in situ techniques are combined to simultaneously examine protein adsorption at the solid–liquid interface from sessile solution droplets. With axisymmetric drop shape analysis by profile (ADSA-P) the change in solid–liquid interfacial tension is determined, while ellipsometry is employed to measure the amount of protein adsorbed from the same solution droplet at the solid–liquid interface. Three proteins (human serum albumin (HSA), immunoglobulin G (IgG) and fibrinogen (Fb)) were dissolved to a concentration of 0.05 mg ml−1 in PBS (pH 7) and sessile droplets were placed for 2 h on a 47.8 nm thick gold coating on glass. The gold coated glass was positioned onto a quartz prism with immersion oil. The prism was aligned in a rotating analyser ellipsometer and the optical beam was thus allowed to be reflected at the hydrophobic gold surface. The ADSA-P set-up was built in 90° cross-beamed set-up around the prism. By combining the results for the adsorbed amounts and the interfacial tension changes over the two hour adsorption period, two stages in the adsorption process could be distinguished. In the first stage, the adsorbed amounts increase in correspondence with the interfacial tension changes, indicating that the interfacial tension changes are caused by adsorption, whereas in the second stage interfacial tension changes continue despite the adsorbed amounts being constant. Consequently, the second stage must be associated with conformational changes of the adsorbed proteins. For HSA and Fb, the conformational contribution to the interfacial tension changes (7.8 and 5.3 mJ m−2, respectively) were approximately 2-fold the adsorption contribution, while for IgG both were equal around 3 mJ m−2.  相似文献   

13.
We used optical extinction spectroscopy to study the structure of proteins adsorbed onto gold nanoparticles of sizes 5-60 nm and their resulting biological binding activity. For these studies, proteins differing in size and shape, with well-characterized and specific interactions-rabbit immunoglobulin G (IgG), goat anti-rabbit IgG (anti-IgG), Staphylococcal protein A, streptavidin, and biotin-were used as model systems. Protein interaction with gold nanoparticles was probed by optical extinction measurements of localized surface plasmon resonance (LSPR) of the gold nanoparticles. Binding of the ligands in solution to protein molecules already immobilized on the surface of gold causes a small but detectable shift in the LSPR peak of the gold nanoparticles. This shift can be used to probe the binding activity of the adsorbed protein. Within the context of Mie theory calculations, the thickness of the adsorbed protein layer as well as its apparent refractive index is shown to depend on the size of the gold nanoparticle. The results suggest that proteins can adopt different orientations that depend on the size of the gold nanospheres. These different orientations, in turn, can result in different levels of biological activity. For example, we find that IgG adsorbed on spheres with diameter ≥20 nm does not bind to protein A. This study illustrates the principle that the size of nanoparticles can strongly influence the binding activity of adsorbed proteins. In addition to the importance of this in cases of direct exposure of proteins to nanoparticles, the results have implications for proteins adsorbed to materials with nanometer scale surface roughness.  相似文献   

14.
The reaction of toluene diisocyanate with polyester, dimethylol propionic acid, metal-complex dye and other additives to form the structure of metal-complex dye polyurethane ionomer molecule has been proven by FT-IR spectra. In aqueous solution, the surface tension of metal-complex dye polyurethane ionomer molecule is seen to slightly increase with increasing concentrtion of metal-complex dye and neopentyl glycol, respectively. This is because the adsorption of hydrophobics of ionomer molecules at the surface of aqueous solution becomes even more order. Under the same experimental condition, the surface tension of metal-complex dye polyurethane ionomer molecule in aqueous solution appears to slightly decrease with increasing NCO/OH ratio, as a result of increased hydrophobics of ionomer molecule adsorbed at the surface of aqueous solution.  相似文献   

15.
The surface of a biomaterial interacts with the body fluid upon implantation in the human body. The biocompatibility of a material is strongly influenced by the adsorption of proteins onto the surface. Titanium is frequently used as a biomaterial for implants in orthopedics and cardiovascular devices. Understanding the biocompatibility is very important to improve implants. The surface chemistry of an implant material and its influence on the interaction with body fluid is crucial in that perspective. The main goal of this study was to investigate the conformation of human plasma fibrinogen (HPF) adsorbed on commercially pure titanium (CP Ti) on a molecular level by means of ex situ atomic force microscopy (AFM). With X-ray photoelectron spectroscopy combined with argon ion beam depth profiling, it was shown that the oxide layer present at the surface was mainly composed of TiO2, with a small percentage of Ti2O3. Ex situ AFM imaging showed the conformation of HPF on CP Ti. Single molecules and aggregates of fibrinogen were observed. The trinodular structure of single HPF molecules (two spherical D domains at the distal ends of the extended molecule and the central spherical E domain) adsorbed onto CP Ti was visualized. Aggregate formation through the connection of the D domains of the HPF molecules was observed on CP Ti. The alphaC domains of HPF were not visible on CP Ti. The ex situ AFM images indicated conformational changes of HPF upon adsorption onto CP Ti. The conformation of the adsorbed HPF molecules was different on mica and titanium. The difference in wettability between both substrates caused a larger spread of the protein on the CP Ti surface and thus resulted in a larger perturbation to the native structure of HPF as compared to mica.  相似文献   

16.
The adsorption affinity of bovine serum albumin (BSA) and lysozyme (LSZ) to calcium hydroxyapatite (CaHAP) was evaluated by desorption and two step adsorption methods. These experiments were carried out at 15°C in a 1×10−4 mol dm−3 KCl solution of pH 6.0. BSA molecules were scarcely desorbed, exhibiting an irreversible adsorption of BSA, though LSZ slightly desorbed. This result supports our previous findings that LSZ adsorbs weakly onto phosphate ions exposed on ac or bc faces of CaHAP while BSA adsorbs strongly onto positively charged sites on ac or bc faces of CaHAP. The amount of adsorbed LSZ was markedly increased by the pre-adsorption of BSA, where LSZ was adsorbed onto BSA-covered CaHAP. On the other hand, the amount of adsorbed BSA was not changed by the pre-adsorption of LSZ. In both pre-adsorption systems it was confirmed by an HPLC method that no protein molecule pre-adsorbed was desorbed after the post-adsorption procedure. Therefore, it was interpreted that the enhancement of adsorption of positively charged LSZ is induced by an electrostatic attractive force through pre-adsorption of negatively charged BSA molecules with a high coverage. However, since the coverage of LSZ onto CaHAP is considerably low, no stimulation of BSA adsorption occurred on the LSZ-covered surface. The formation of double protein adsorbed layers consisting of pre- and post-adsorbed proteins was proposed.  相似文献   

17.
A new biosorbent, methylated yeast (MeYE), was prepared for the adsorptive separation of proteins from aqueous solutions. Yeast was methylated in a 0.1 M HCl methyl alcohol solution at room temperature. About 80% of the carboxylic groups of yeast could be methylated within 9 h. The adsorption of egg albumin onto MeYE was studied to evaluate the protein adsorption ability of MeYE. At near neutral pH, egg albumin was scarcely adsorbed onto unmethylated yeast and the adsorbed amount of egg albumin increased with increasing methylation degree. The amount of egg albumin adsorbed onto MeYE increased with increasing pH from 4 to 7 and steeply decreased above pH 7. The Langmuir isotherm was applied to determine the apparent adsorption constant and the saturated adsorbed amount of egg albumin on MeYE. Both the apparent adsorption constant and the saturated adsorbed amount increased with the degree of methylation. The saturated adsorbed amount of egg albumin onto MeYE having methylation degree 77% was 8.41 x 10(-6) mol g(-1) or 0.378 gg(-1) at near neutral pH.  相似文献   

18.
利用分子动力学模拟方法研究了聚乙烯链在羟基化β-石英(100)表面上的吸附. 结果表明, 吸附基底上的规则图案起到模板的作用, 无论是真空还是溶液环境, 都会引导聚乙烯链在表面形成二维沿着[110]方向取向的折叠构型. 为了与聚乙烯的吸附相比较, 进一步研究了聚氧化乙烯链在相同表面上的吸附情况. 结果表明, 极性链与非极性链在极性表面上的吸附情况完全不同.  相似文献   

19.
The ability to engineer biomaterial surfaces that are capable of a dynamic interaction with cells and tissues is central to the development of medical implants with improved functionality. An important consideration in this regard is the role played by the extracellular proteins that bind to an implant surface in vivo. Deliberate use of an ad-layer of such proteins on an implant surface has been observed to guide and direct cell response. However, the role that changes in surface topography might play in determining the nature of this cell–protein–surface interaction has not been investigated in detail. In this study, calcium phosphate (CaP) thin films have been deposited onto substrates with varying topography such that this is reflected in the (conformal) CaP surface features. A fibronectin (FN) ad-layer was then deposited from solution onto each surface and the response of MG63 osteoblast-like cells investigated. The results revealed that in all cases, the presence of the adsorbed FN layer on the CaP thin films improved MG63 cell adhesion, proliferation and promoted early onset differentiation. Moreover, the nature and scale of the response were shown to be influenced by the underlying CaP surface topography. Specifically, MG63 cell on FN-coated CaP thin films with regular topographical features in the nanometer range showed statistically significant differences in focal adhesion assembly, osteocalcin expression and alkaline phosphase activity compared to CaP thin films that lacked these topographical features. As such, these data indicate that surface topography can be used to further influence cell adhesion and downstream differentiation by enhancing the effects of a surface adsorbed FN layer.  相似文献   

20.
The adsorption of dodecyltrimethylammonium bromide (DTAB) onto natural muscovite mica and a synthetic expandable mica (EM) in aqueous solution has been investigated using both microscopic and macroscopic surface characterization techniques. The electrokinetic properties of the surfaces were monitored as a function of the concentration of DTAB using atomic force microscopy and microelectrophoresis. The adsorption isotherm of DTAB on EM was measured up to a solution concentration just below the critical micelle concentration of the surfactant. The thickness of the adsorbed layer on EM was determined using X-ray diffraction. Results indicate that the adsorbed layer consists of molecules lying quite flat on the mica surface at low concentrations and adsorbed in interleaved aggregate structures at concentrations approaching the critical micelle concentration of the surfactant in solution. Copyright 2001 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号