首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甘油水溶液氢键特性的分子动力学模拟   总被引:3,自引:0,他引:3  
为了研究低温保护剂溶液的结构和物理化学特性, 以甘油为保护剂, 采用分子动力学方法, 对不同浓度的甘油和水的二元体系进行了模拟. 得到了不同浓度的甘油水溶液在2 ns内的分子动力学运动轨迹, 通过对后1 ns内运动轨迹的分析, 得到了各个原子对的径向分布函数和甘油分子的构型分布. 根据氢键的图形定义, 分析了氢键的结构和动力学特性. 计算了不同浓度下体系中平均每个原子(O和H)和分子(甘油和水)参与氢键个数的百分比分布及其平均值. 同时还计算了所有氢键、水分子之间的氢键以及甘油与水分子之间的氢键的生存周期.  相似文献   

2.
We report a computational study for the 17O NMR tensors (electric field gradient and chemical shielding tensors) in crystalline uracil. We found that N-H...O and C-H...O hydrogen bonds around the uracil molecule in the crystal lattice have quite different influences on the 17O NMR tensors for the two C=O groups. The computed 17O NMR tensors on O4, which is involved in two strong N-H...O hydrogen bonds, show remarkable sensitivity toward the choice of cluster model, whereas the 17O NMR tensors on O2, which is involved in two weak C-H...O hydrogen bonds, show much smaller improvement when the cluster model includes the C-H...O hydrogen bonds. Our results demonstrate that it is important to have accurate hydrogen atom positions in the molecular models used for 17O NMR tensor calculations. In the absence of low-temperature neutron diffraction data, an effective way to generate reliable hydrogen atom positions in the molecular cluster model is to employ partial geometry optimization for hydrogen atom positions using a cluster model that includes all neighboring hydrogen-bonded molecules. Using an optimized seven-molecule model (a total of 84 atoms), we were able to reproduce the experimental 17O NMR tensors to a reasonably good degree of accuracy. However, we also found that the accuracy for the calculated 17O NMR tensors at O2 is not as good as that found for the corresponding tensors at O4. In particular, at the B3LYP/6-311++G(d,p) level of theory, the individual 17O chemical shielding tensor components differ by less than 10 and 30 ppm from the experimental values for O4 and O2, respectively. For the 17O quadrupole coupling constant, the calculated values differ by 0.30 and 0.87 MHz from the experimental values for O4 and O2, respectively.  相似文献   

3.
The structure of acetone and dimethyl sulfoxide in the liquid state is investigated using a combination of neutron diffraction measurements and empirical potential structure refinement (EPSR) modeling. By extracting the orientational correlations from the EPSR model, the alignment of dipoles in both fluids is identified. At short distances the dipoles or neighboring molecules are found to be in antiparallel configurations, but further out the molecules tend to be aligned predominately as head to tail in the manner of dipolar ordering. The distribution of these orientations in space around a central molecule is strongly influenced by the underlying symmetry of the central molecule. In both liquids there is evidence for weak methyl hydrogen to oxygen intermolecular contacts, though these probably do not constitute hydrogen bonds as such.  相似文献   

4.
A combination of neutron diffraction augmented with isotopic substitution and computer modeling using empirical potential structure refinement has been used to extract detailed structural information for L-glutamic acid dissolved in 2 M NaOH solution. This work shows that the tetrahedral hydrogen bonding network in water is severely disrupted by the addition of glutamic acid and NaOH, with the number of water-water hydrogen bonds being reduced from 1.8 bonds per water molecule in pure water to 1.4 bonds per water molecule in the present solution. In the glutamic acid molecule, each carboxylate oxygen atom forms an average of three hydrogen bonds with the surrounding water solvent with one of these hydrogens being shared between the two oxygen atoms on each carboxylate group, while each amine hydrogen forms a single hydrogen bond with the surrounding water solvent. Additionally, the average conformation of the glutamic acid molecules in these solutions is extracted.  相似文献   

5.
The X-ray structure of the aquaglyceroporin GlpF protein refined by Fu et al. [D. Fu, A. Libson, L.J.W. Miercke, C. Weitzman, P. Nollert, J. Krucinski, R.M. Stroud, Science 290 (2000) 481--486.] shows three glycerol molecules co-crystallized inside the channel. The conformations of these molecules have been used to study the relationship between conformation, energy balance and hydration in the hope that it will provide insight into the molecular transport mechanism in the channel. Initially, the position of the hydrogen atoms of the glycerol molecule in the three conformations was established. As the glycerol molecule progressively loses its hydration waters in its transport pathway inside the channel, the nature of the glycerol bonds changes: the geometry of the alkyl backbone adapts to the available space while the progressive dehydration is partially compensated by the formation of intramolecular hydrogen bonds. The nature of these hydrogen bonds has been established by DFT calculation of the rotation barriers of the hydroxyl groups. Finally, the influence of the intramolecular hydrogen bonds on the conformation of the alkyl backbone has been established by quantum calculations of potential energy surfaces by semi-empirical quantum calculations PM3/Zindo.  相似文献   

6.
A neutron diffraction experiment with isotopic H/D substitution on a concentrated HCl/H2O solution is presented. The full set of partial structure factors is extracted, by combining the diffraction data with a Monte Carlo simulation. This allows us to investigate both the changes of the water structure in the presence of ions and their solvation shell, overcoming the limitations of standard diffraction experiments. It is found that the interaction with the solutes affects the tetrahedral network of hydrogen bonded water molecules, in a manner similar to the application of an external pressure to pure water, although HCl seems less effective than other solutes, such as NaOH, at the same concentration. Consistent with experimental and theoretical data, the number of water molecules in the solution is not sufficient to completely dissociate the acid molecule. As a consequence, both dissociated H+ and Cl- ions and undissociated HCl molecules coexist in the sample, and this mixture is correctly reproduced in the simulation box. In particular, the hydrated H+ ions, forming a H3O+ complex, participate in three strong and short hydrogen bonds, while a well-defined hydration shell is found around the chlorine ion. These results are not consistent with the findings of early diffraction experiments on the same system and could only be obtained by combining high quality experimental data with a proper computer simulation.  相似文献   

7.
There is ongoing interest in the alcohol industry to significantly reduce and/or add value to the liquid residue, vinasse, produced after the distillation and rectification of ethanol from sugar cane. Vinasse contains potassium, glycerol, and a protein component that can cause environmental issues if improperly disposed of. Currently, some industries have optimized their processes to reduce waste, and a significant proportion of vinasse is being considered for use as an additive in other industrial processes. In the manufacture of cement and asphalt, vinasse has been used in the mixtures at low concentrations, albeit with some physical and mechanical problems. This work is the first molecular approximation of the components of the sugar cane vinasse in an industrial context, and it provides atomic details of complex molecular events. In the current study, the major components of sugar cane vinasse, alone or complexed on the surface of calcium carbonate, were modeled and simulated using molecular dynamics. The results showed that the protein component, represented by the mannoprotein Mp1p, has a high affinity for forming hydrogen bonds with potassium and glycerol in the vinasse. Additionally, it provides atomic stability to the calcium carbonate surface, preserving the calcite crystalline structure in the same way potassium ions interact with the carbonate group through ion–dipole interactions to improve the cohesion of the modeled surface. On the contrary, when the glycerol molecule interacts with calcium carbonate using more than two hydrogen bonds, it triggers the breakdown of the crystalline structure of calcite expanding the ionic pair.  相似文献   

8.
陈聪  李维仲  宋永臣  翁林岽  张宁 《化学学报》2012,70(8):1043-1046
利用分子动力学模拟方法研究了浓度对甘油-水-氯化钠三元溶液中甘油自扩散系数的影响. 随着甘油浓度的增大, 甘油的自扩散系数逐渐减小. 氢键分析表明, 甘油自扩散系数的减小来源于其参与的甘油-水氢键数目的减少和甘油-甘油氢键数目的增加.  相似文献   

9.
The biologically transformed product of estradiol valerate, namely 3,7α‐dihydroxyestra‐1,3,5(10)‐trien‐17‐one monohydrate, C18H22O3·H2O, has been investigated using UV–Vis, IR, 1H and 13C NMR spectroscopic techniques, as well as by mass spectrometric analysis. Its crystal structure was determined using single‐crystal X‐ray diffraction based on data collected at 100 K. The structure was refined using the independent atom model (IAM) and the transferred electron‐density parameters from the ELMAM2 database. The structure is stabilized by a network of hydrogen bonds and van der Waals interactions. The topology of the hydrogen bonds has been analyzed by the Bader theory of `Atoms in Molecules' framework. The molecular electrostatic potential for the transferred multipolar atom model reveals an asymmetric character of the charge distribution across the molecule due to a substantial charge delocalization within the molecule. The molecular dipole moment was also calculated, which shows that the molecule has a strongly polar character.  相似文献   

10.
A hydrogen bond of the type C?H???X (X=O or N) is known to influence the structure and function of chemical and biological systems in solution. C?H???O hydrogen bonding in solution has been extensively studied, both experimentally and computationally, whereas the equivalent thermodynamic parameters have not been enumerated experimentally for C?H???N hydrogen bonds. This is, in part, due to the lack of systems that exhibit persistent C?H???N hydrogen bonds in solution. Herein, a class of molecule based on a biologically active norharman motif that exhibits unsupported intermolecular C?H???N hydrogen bonds in solution has been described. A pairwise interaction leads to dimerisation to give bond strengths of about 7 kJ mol?1 per hydrogen bond, which is similar to chemically and biologically relevant C?H???O hydrogen bonding. The experimental data is supported by computational work, which provides additional insight into the hydrogen bonding by consideration of electrostatic and orbital interactions and allowed a comparison between calculated and extrapolated NMR chemical shifts.  相似文献   

11.
Car-Parrinello molecular dynamics simulations of a hydroxyl radical in liquid water have been performed. Structural and dynamical properties of the solvated structure have been studied in details. The partial atom-atom radial distribution functions for the hydrated hydroxyl do not show drastic differences with the radial distribution functions for liquid water. The OH is found to be a more active hydrogen bond donor and acceptor than the water molecule, but the accepted hydrogen bonds are much weaker than for the hydroxide OH- ion. The first solvation shell of the OH is less structured than the water's one and contains a considerable fraction of water molecules that are not hydrogen bonded to the hydroxyl. Part of them are found to come closer to the solvated radical than the hydrogen bonded molecules do. The lifetime of the hydrogen bonds accepted by the hydroxyl is found to be shorter than the hydrogen bond lifetime in water. A hydrogen transfer between a water molecule and the OH radical has been observed, though it is a much rarer event than a proton transfer between water and an OH- ion. The velocity autocorrelation power spectrum of the hydroxyl hydrogen shows the properties both of the OH radical in clusters and of the OH- ion in liquid.  相似文献   

12.
Spallation neutron and high-energy X-ray diffraction experiments have been performed to investigate the local structure of the glacial and supercooled liquid states in triphenyl phosphite. The observed diffraction patterns have been interpreted using a Reverse Monte Carlo modeling technique. The results show that the glacial state forms unusually weak intermolecular hydrogen bonds between an oxygen atom connected to a phenyl ring and an adjacent phenyl ring aligned in an approximately antiparallel configuration. The structure is very different from the hexagonal crystal which is characterized by two weaker hydrogen bonds between linear arrays of molecules which are offset from each other and packed in a hexamer arrangement.  相似文献   

13.
An ab initio quantum mechanical charge field molecular dynamics simulation was carried out for one methanol molecule in water to analyze the structure and dynamics of hydrophobic and hydrophilic groups. It is found that water molecules around the methyl group form a cage-like structure whereas the hydroxyl group acts as both hydrogen bond donor and acceptor, thus forming several hydrogen bonds with water molecules. The dynamic analyses correlate well with the structural data, evaluated by means of radial distribution functions, angular distribution functions, and coordination number distributions. The overall ligand mean residence time, τ identifies the methanol molecule as structure maker. The relative dynamics data of hydrogen bonds between hydroxyl of methanol and water molecules prove the existence of both strong and weak hydrogen bonds. The results obtained from the simulation are in excellent agreement with the experimental results for dilute solution of CH(3)OH in water. The overall hydration shell of methanol consists in average of 18 water molecules out of which three are hydrogen bonded.  相似文献   

14.
The gas phase of hydrogen fluoride has been investigated by neutron diffraction experiments at three different particle densities. All investigated states are within the liquid-gas coexistence region of hydrogen fluoride. From the obtained diffraction data we deduced information about the local structure of the gas phase, which consists of small agglomerates. This has been expected as liquid hydrogen fluoride forms the strongest hydrogen bonds known. Molecular dynamics simulations with a modified potential have been carried out for all experimentally investigated states. The results confirmed that the size of the formed agglomerates in the gas phase is growing with increasing density of the gas phase.  相似文献   

15.
A set of OHO hydrogen bonded systems with known neutron diffraction structure has been studied by fast 1H-MAS echo spectroscopy. It is shown that the application of a simple rotor synchronized echo sequence combined with fast MAS allows a faithful determination of the chemical shift of the proton in the hydrogen bond. Employing the empirical valence bond order model, the experimental 1H chemical shifts of the hydrogen bonded protons are correlated to the hydrogen bond geometries. The resulting correlation between the proton chemical shift and the deviation of the proton from the center of the hydrogen bond covers a broad range of substances. Deviations from the correlation curve, which are observed in certain systems with strong hydrogen bonds, are explained in terms of proton tautomerism or delocalization in low-barrier hydrogen bonds. These deviations are a highly diagnostic tool to select potential candidates for further experimental and theoretical studies. Thus, the combination of the 1H-MAS echo sequence with the correlation curve yields a simple and versatile tool for the structural analysis of OHO hydrogen bonds.  相似文献   

16.
A neutron diffraction experiment with isotopic H/D substitution on four concentrated NaOH/H(2)O solutions is presented. The full set of partial structure factors is extracted, by combining the diffraction data with a Monte Carlo simulation. These allow to investigate both the changes of the water structure in the presence of ions and their solvation shells. It is found that the interaction with the solute affects the tetrahedral network of hydrogen bonded water molecules in a manner similar to the application of high pressure to pure water. The solvation shell of the OH(-) ions has an almost concentration independent structure, although with concentration dependent coordination numbers. The hydrogen site coordinates a water molecule through a weak bond, while the oxygen site forms strong hydrogen bonds with a number of molecules that is on the average very close to four at the higher water concentrations and decreases to about three at the lowest one. The competition between hydrogen bond interaction and Coulomb forces in determining the orientation of water molecules within the cation solvation shell is visible in the behavior of the g(NaHw)(r) function  相似文献   

17.
18.
Using first principles molecular dynamics simulations in the isobaric-isothermal ensemble (T = 300 K, p = 1 atm) with the Becke-Lee-Yang-Parr exchange/correlation functional and a dispersion correction due to Grimme, the hydrogen bonding networks of pure liquid water, methanol, and hydrogen fluoride are probed. Although an accurate density is found for water with this level of electronic structure theory, the average liquid densities for both hydrogen fluoride and methanol are overpredicted by 50 and 25%, respectively. The radial distribution functions indicate somewhat overstructured liquid phases for all three compounds. The number of hydrogen bonds per molecule in water is about twice as high as for methanol and hydrogen fluoride, though the ratio of cohesive energy over number of hydrogen bonds is lower for water. An analysis of the hydrogen-bonded aggregates revealed the presence of mostly linear chains in both hydrogen fluoride and methanol, with a few stable rings and chains spanning the simulation box in the case of hydrogen fluoride. Only an extremely small fraction of smaller clusters was found for water, indicating that its hydrogen bond network is significantly more extensive. A special form of water with on average about two hydrogen bonds per molecule yields a hydrogen-bonding environment significantly different from the other two compounds.  相似文献   

19.
An experimental charge density study of a 1 : 1 complex of Cu-cfx (cfx = ciprofloxacin), 1 [Cu(cfx)(H(2)O)(3)]SO4.2H(2)O, has been performed using single-crystal X-ray diffraction data collected at 100 K using conventional Mo Kalpha radiation. Metal-ligand (ML) bonds and hydrogen bonds (HBs) have been analysed using topological analysis of the electron density with the atoms in molecules (AIM) approach. The copper atom binds to two oxygen atoms in one end of the zwitterionic form of the cfx molecule, in addition to forming bonds with three water molecules, forming a square pyramidal coordination geometry. AIM decomposition of the experimental electron density establishes that the copper atom binds more strongly to the cfx molecule than to the water molecules, suggesting that the latter can be detached leaving behind a reactive, water-free Cu-cfx complex available for interaction with e.g. a macromolecular site. AIM analysis of the extensive hydrogen bond pattern reveals that the positively charged N-end of the zwitterionic cfx forms a relatively strong N-H-O hydrogen bond implying that this region of cfx may play an important role in the docking process in the active site. Visualisation and statistics of selected density derived properties on the molecular surface of the isolated cfx molecule vs its metal complexed counterpart points out regions of potential reactivity. The effect of the fluorine atom is to expand the negative region of the electrostatic potential, while the nitrogen end is heavily electropositive and willingly donates to--for molecular docking purposes--relatively strong hydrogen bonding. The Cu atom is highlighted as a potentially highly reactive site which is likely to interact strongly with any given negative ligand.  相似文献   

20.
Geometries of 27 generated conformers of levoglucosan were optimized in vacuo at DFT level of theory combining several functionals with high quality basis sets. For the sake of comparison a reference molecular and crystal geometry obtained from 30 K single crystal neutron diffraction data was used. Analysis of the conformers’ geometries revealed that in all stable conformers intramolecular two-or three centre hydrogen bonds were formed. Relative energy of the conformer, which approximated the molecule in the crystal structure the most, was only ∼3 kcal/mol higher, than the energy of the most stable conformer in vacuo. The largest discrepancies between the geometries calculated in vacuo and experimental geometry concentrated in the vicinity of anomeric C1. These differences were reduced by involving O1 to intermolecular hydrogen bond using a simple model of the respective hydrogen bond in the crystal.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号