首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
14N nuclear quadrupole resonance (NQR) frequencies have been measured in picolinamide, nicotinamide, isonicotinamide, 2,6-pyridine dicarboxamide, and acetamide by double resonance. The 14N NQR spectra in picolinamide, nicotinamide, isonicotinamide, and 2,6-pyridine dicarboxamide show the presence of two distinct nitrogen positions: the ring position with the quadrupole coupling constant about 4,5 MHz and the amide position with the quadrupole coupling constant about 2.6 MHz. The NQR data are related to the structure of the investigated compounds and to the N--H...O hydrogen bonds.  相似文献   

2.
The complete (14)N nuclear quadrupole resonance (NQR) spectra have been measured in the two polymorphic crystalline phases of the molecular complex isonicotinamide-oxalic acid (2:1) by nuclear quadrupole double resonance. The observed NQR frequencies, quadrupole coupling constants, and asymmetry parameters (η) have been assigned to the two nitrogen positions (ring and amide) in a molecule on the basis of the intensity and multiplicity of the double resonance signals. The NQR data for the ring nitrogen in both polymorphic phases deviate from the correlation relations observed in substituted pyridines. This deviation is analyzed in a model, where it is assumed that an additional electric charge on the nitrogen atom changes the NQR parameters. The model suggests that this additional electric charge is negative so that the N···H-O hydrogen bond seem to be partially ionic, of the type N(-)···H-O.  相似文献   

3.
Hydrogen bonding in crystalline 3,5-pyridine dicarboxylic acid has been studied by (2)H, (14)N, and (17)O nuclear quadrupole resonance. The (2)H and (17)O data show the presence of two distinct hydrogen bonds, a "normal" O-H···O bond and a short, strong N···H···O bond, with significantly different NQR parameters. In the latter, the temperature variation of the (14)N nuclear quadrupole resonance (NQR) parameters is related to the phonon-driven proton transfer in the N···H···O hydrogen bond. The temperature dependence of the N···H and H···O distances in the N···H···O hydrogen bond is extracted from the (14)N NQR data.  相似文献   

4.
The (17)O NQR frequencies have been measured in cis-cyclobutane-1,2-dicarboxylic acid and the quadrupole coupling tensors have been determined at various temperatures. Two O···H oxygen positions and two O-H oxygen positions are observed, showing the presence of two different types of O-H···O hydrogen bonds in the unit cell. The quadrupole coupling constants at the O-H oxygen positions are approximately 30% lower than the lowest quadrupole coupling constants experimentally observed at the C-O-H positions in other carboxylic acids with either ordered or disordered hydrogen bonds. The O-H distances have been calculated from the (17)O-(1)H dipole-dipole interaction at the O-H oxygen positions. The obtained values are longer than the O-H distances usually found in O-H···O hydrogen bonds with comparable O···O distance, in agreement with the proposed proton exchange O-H···O ? O···H-O, which partially averages the dipole-dipole interaction. The energy difference of the two proton configurations, O-H···O and O···H-O, is calculated from the O-H distances determined by NQR. The temperature dependence of the (17)O quadrupole coupling tensors at the (17)O···H-O oxygen positions is analyzed in the model of proton exchange and the energy differences of the two proton configurations obtained by this analysis agree with the values obtained from the O-H distances. The quadrupole coupling tensors are analyzed in a model based on the Townes and Dailey model. The model shows that the population of an oxygen lone pair orbital is at this oxygen position reduced from 2 to approximately 1.3. The electron electric charge is most probably transferred to the oxygen σ and π electron orbitals. This may be associated with the structure of the cyclobutane ring, where the X-ray data show the presence of two unusually short C-C bonds.  相似文献   

5.
The reorientation of a pyridinium ion in the paraelectric and antiferroelectric phase of PyHICl(4) is investigated using (1)H-(14)N nuclear quadrupole double resonance (NQDR). The (14)N nuclear quadrupole resonance frequencies are measured. The temperature variations of the principal values of the time-averaged electric-field-gradient (EFG) tensor at the nitrogen position are used to determine the occupation probabilities of the six orientations of a pyridinium ion in both crystallographic phases. The energy difference between various orientations is determined. The molar transition entropy associated with the reorientation of the pyridinium ions is calculated and compared to the experimental value.  相似文献   

6.
Four new synthesised liquid crystalline compounds belonging to the homologous series of fluorinated biphenyl benzoate esters have been studied to compare their dielectric and electrooptic properties. Three of the studied compounds exhibited ferro- and antiferroelectric phases while one of them exhibited only one liquid crystalline phase – ferroelectric SmC*. No paraelectric phase was detected and straight transition between isotropic liquid and ferroelectric phases was observed for all studied compounds. Tilt angle for all of the studied compounds was equal to ca. 45? in the liquid crystalline phases, except temperature range close to the isotropic liquid–ferroelectric smectic phase transition. Temperature dependences of helical pitch, spontaneous polarisation and switching time have been determined. Based on XRD results, temperature dependence of the layer thickness has also been found. Only one relaxation process has been revealed in the ferroelectric as well as antiferroelectric phases, even the bias field up to 8 V/µm was applied. The dielectric and electrooptic data are discussed based on the mean-field theory predictions.  相似文献   

7.
Detailed investigations were carried out to explore the interaction systems of NH(4)VO(3)/H(2)O(2)/oxazole in aqueous solution under physiological conditions by a combined use of multinuclear NMR ((1)H, (13)C, (14)N and (51)V), diffusion ordered spectroscopy (DOSY), variable temperature NMR, electrospray ionization mass spectrometry (ESI-MS), spin-lattice relaxation and density functional calculations. The results indicated the formation of a new peroxovanadate species [OV(O(2))(2)(oxazole)](-) with oxazole coordinating to vanadium through nitrogen atom. The solution structure of the new species was predicted from theoretical calculations.  相似文献   

8.
The temperature dependence of (35)Cl NQR frequencies and the spin-lattice relaxation times T(1) has been measured in the wide temperature range of 4.2-420 K for morpholinium hydrogen chloranilate in which a one-dimensional O-HO hydrogen-bonded molecular chain of hydrogen chloranilate ions is formed. An anomalous temperature dependence of the NQR frequencies was analyzed to deduce a drastic temperature variation of the electronic state of the hydrogen-bonded molecular chain. The hydrogen atom distribution in the OHO hydrogen bond is discussed from the results of NQR as well as multi-temperature X-ray diffraction. Above ca. 330 K, the T(1) showed a steep decrease with an activation energy of ca. 70 kJ mol(-1) and with an isotope ratio (37)Cl T(1)/(35)Cl T(1) = 0.97 ± 0.2. The orientational change of the z axis of electric field gradient tensor in conjunction with the hydrogen transfer between adjacent hydrogen chloranilate ions is suggested as a possible relaxation mechanism.  相似文献   

9.
Two large-pore metal-doped aluminophosphates, Mn4Al5(PO4)12[N(C2H4NH3)3]3[N(C2H4NH3)2·(C2H4NH2)](NH4)2·14H2O(Mn4-NJU) and Co4Al5(PO4)12[N(C2H4NH3)3][N(C2H4NH3)2(C2H4NH2)]3·(NH4)4·13H2O(Co4-NJU), which have the same open framework structures, were hydrothermally synthesized. The structures of these compounds consist of TO4 tetrahedra, which are linked together by corner-sharing to form an open framework with unique intersecting twelve-membered ring channels in three dimensions. The compounds crystallize in cubic space group I(-4)3m with a=1.6795(2) nm and V=4.7374(9) nm3 for Mn4-NJU, and a=1.67372(19) nm and V=4.6887(9) nm3 for Co4-NJU, respectively. Single crystal structure analyses show that the protruding O atoms of the frameworks of the compounds are linked to protonated 4-(2-aminoethyl)diethylenetriamine(TREN, C6H18N4) ions in the windows by means of hydrogen-bonding under the hydrothermal condition. It is also found that the components inside the super cages of the compounds are changeable, and the metal ions M2 (M=Mn, Co) and Al3 disorderedly occupy the same crystallographic positions.  相似文献   

10.
A series of isostructural 3d-4f coordination clusters (CCs) [Mn(4)Ln(4)(OH)(6)(H(2)L)(2)(H(3)L)(2)(PhCO(2))(2)(N(3))(2)(MeOH)(4)]Cl(1.6)(N(3))(0.4)(NO(3))(2)·2.4H(2)O·1.6MeOH where Ln = Gd, Tb, Dy, Ho and Er and H(5)L = bis(2-hydroxyethyl)amino-tris(hydroxymethyl)methane (bis-tris) has been synthesised and structurally characterised. The paramagnetic metal ions within the clusters are weakly antiferromagnetically coupled, with the Tb and Dy compounds displaying slow relaxation of their magnetisation. This is the first report of this versatile ligand being used to target 3d-4f CCs.  相似文献   

11.
A systematic computational study was carried out to characterize the 17O, 14N, and 2H nuclear quadrupole resonance (NQR) parameters in the anhydrous and monohydrated cytosine crystalline structures. To include the hydrogen-bonding effects in the calculations, the most probable interacting molecules with the central molecule in the crystalline phase were considered in the pentameric clusters of both structures. To calculate the parameters, couples of the methods B3LYP and B3PW91 and the basis sets 6-311++G** and CC-pVTZ were employed. The mentioned methods calculated reliable values of 17O, 14N, and 2H NQR tensors in the pentameric clusters, which are in good agreements with the experiment. The different influences of various hydrogen-bonding interactions types, N-H...N, N-H...O, and O-H...O, were observed on the 17O, 14N, and 2H NQR tensors. Lower values of quadrupole coupling constants and higher values of asymmetry parameters in the crystalline monohydrated cytosine indicate the presence of stronger hydrogen-bonding interactions in the monohydrated form rather than that of crystalline anhydrous cytosine.  相似文献   

12.
[Pt(2,2'-bpy)(1-MeC-N3)(2)](NO(3))(2) (1) (2,2'-bpy = 2,2'-bipyridine; 1-MeC = 1-methylcytosine) exists in water in an equilibrium of head-tail and head-head rotamers, with the former exceeding the latter by a factor of ca. 20 at room temperature. Nevertheless, 1 reacts with (en)Pd(II) (en = ethylenediamine) to give preferentially the dinuclear complex [Pt(2,2'-bpy)(1-MeC(-)-N3,N4)(2)Pd(en)](NO(3))(2)·5H(2)O (2) with head-head arranged 1-methylctosinato (1-MeC(-)) ligands and Pd being coordinated to two exocyclic N4H(-) positions. Addition of AgNO(3) to a solution of 2 leads to formation of a pentanuclear chain compound [{Pt(2,2'-bpy)(1-MeC(-))(2)Pd(en)}(2)Ag](NO(3))(5)·14H(2)O (5) in which Ag(+) cross-links two cations of 2 via the four available O2 sites of the 1-MeC(-) ligands. 2 and 5 appear to be the first X-ray structurally characterized examples of di- and multinuclear complexes derived from a Pt(II) species with two cis-positioned cytosinato ligands adopting a head-head arrangement. (tmeda)Pd(II) (tmeda = N,N,N',N'-tetramethylethylenediamine) and (2,2'-bpy)Pd(II) behave differently toward 1 in that in their derivatives the head-tail orientation of the 1-MeC(-) nucleobases is retained. In [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(2,2'-bpy)}(2)](NO(3))(4)·10H(2)O (4), both (2,2'-bpy)Pd(II) entities are pairwise bonded to N4H(-) and O2 sites of the two 1-MeC(-) rings, whereas in [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(tmeda)}(2)(NO(3))](NO(3))(3)·5H(2)O (3) only one of the two (tmeda)Pd(II) units is chelated to N4H(-) and O2. The second (tmeda)Pd(II) is monofunctionally attached to a single N4H(-) site. On the basis of these established binding patterns, ways to the formation of mixed Pt/Pd complexes and possible intermediates are proposed. The methylene protons of the en ligand in 2 are special in that they display two multiplets separated by 0.64 ppm in the (1)H NMR spectrum.  相似文献   

13.
Four Mn(II) complexes bound to a neutral bis-benzimidazole diamide ligand N,N'-bis(2-methyl benzimidazolyl 2,2'-oxy-diethanamide) (GBOA) have been synthesized and characterized. Anionic ligand associated with the complexes varies as Cl- CH3COO-, SCN- and ClO4-. X-ray structure of one of the complexes [Mn(GBOA)2(H2O)2]Cl(2)·4H2O was solved and shows that the Mn(II) ion is hexacoordinate. Two equatorial positions are occupied by benzimidazole imine nitrogen atoms while the other two sites are occupied by amide carbonyl oxygens. The imine nitrogen and carbonyl oxygens are bound to Mn(II) by different arms of the two ligands while axial sites are occupied by two water molecules. Two Cl- anions are outside the coordination sphere and form an extensive 3D H-bonded network. Axially distorted octahedral geometry is confirmed for all the four complexes by low temperature EPR spectroscopy. Distortion parameter D was found to be similar for [Mn(GBOA)2(H2O)2]Cl(2)·4H2O and [Mn(GBOA)2(H2O)2]·(CH3COO)2·H2O. Cyclic voltammograms have been obtained for all the four complexes and E(1/2) values are dependent on the anionic ligand being in the coordination sphere or outside. [Mn(GBOA)2(H2O)2]Cl(2)·4H2O and [Mn(GBOA)2(H2O)2]·(CH3COO)2·H2O carry out the selective oxidation of N-benzyldimethylamine, and 1-methyl-pyrollidine to their respective carbonyl products with catalytic efficiency of 35-50%.  相似文献   

14.
The 14N nuclear quadrupole resonance (NQR) quadrupole coupling tensors of picolinic, nicotinic, isonicotinic and dinicotinic acids have been determined. Two different 14N quadrupole coupling constants 1007 kHz and 4159 kHz have been observed for picolinic acid demonstrating the presence of both protonated and non-protonated nitrogen atoms in this system in the solid. Only one set of non-protonated 14N NQR lines has been observed in other pyridinecarboxylic acids demonstrating the absence of the protonated zwitter ion forms observed in picolinic acid. The non-protonated 14N quadrupole coupling constant is the highest for the non-protonated nitrogen in picolinic acid and decreases to 3774 kHz in nicotinic acid and 3570 kHz in isonicotinic acid. It is the lowest in dinicotinic acid where the corresponding 14N quadrupole coupling constant is 2794 kHz. The observed anomalous decrease in the 14N quadrupole coupling constant of dinicotinic acid with decreasing temperature is tentatively explained as reflecting the increase in the residence time of the N–H?O bonded proton in the potential well close to the nitrogen.  相似文献   

15.
A novel mononuclear metal-organic compound, [Cu(Hdabco)(H(2)O)Cl(3)] (1, dabco = 1,4-diazabicyclo[2.2.2]octane) in which the Cu(II) cation adopts a slightly distorted bipyramidal geometry where the three Cl anions constitute the equatorial plane and the Hdabco cation and H(2)O molecule occupy the two axial positions, was synthesized. Its paraelectric-to-ferroelectric phase transition at 235 K (T(c)) and dynamic behaviors were characterized by single crystal X-ray diffraction analysis, thermal analysis, dielectric and ferroelectric measurements, second harmonic generation experiments, and solid-state nuclear magnetic resonance measurements. Compound 1 behaves as a molecular rotor above room temperature in which the (Hdabco) part rotates around the N···N axis as a rotator and the [Cu(H(2)O)Cl(3)] part acts as a stator. In the temperature range 235-301 K, a twisting motion of the rotator is confirmed. Below the T(c), the motions of the rotor are frozen and the molecules become ordered, corresponding to a ferroelectric phase. Origin of the ferroelectricity was ascribed to relative movements of the anions and cations from the equilibrium position, which is induced by the order-disorder transformation of the twisting motion of the molecule between the ferroelectric and paraelectric phases. Study of the deuterated analogue [Cu(Ddabco)(D(2)O)Cl(3)] (2) excludes the possibility of proton ordering as the origin of the ferroelectricity in 1.  相似文献   

16.
Three manganese(III) compounds, [Mn(III)(vanoph)(DMF)(H(2)O)]ClO(4) (1), [Mn(III)(vanoph)(N(3))(H(2)O)]·2H(2)O (2) and [Mn(III)(saloph)(μ(1,3)-N(3))](n) (3), where H(2)vanoph = N,N'-(1,2-phenylene)-bis(3-methoxysalicylideneimine), H(2)saloph = N,N'-(1,2-phenylene)-bis(salicylideneamine) are tetradentate N(2)O(2) ligands and DMF = N,N-dimethylformamide, have been prepared and characterised by elemental analysis, IR and UV-Vis spectroscopy and single-crystal X-ray diffraction studies. Compounds 1 and 2 are monomeric but compound 3 consists of a chain system with the repeating unit [Mn(III)(saloph)(N(3))] bridged by μ-1,3 azide. Compound 1 crystallises in monoclinic space group P2(1)/n with cell dimensions of a = 11.1430(2), b = 16.3594(3), c = 15.4001(3) ?, β = 108.417(1), Z = 4 whereas compounds 2 and 3 crystallise in orthorhombic space groups Pbca and Pna2(1), respectively, with cell dimensions of a = 16.069(3), b = 15.616(3), c = 18.099(4) ?, Z = 8 (for 2) and a = 18.760(9), b = 13.356(5), c = 6.616(3) ?, Z = 4 (for 3). In all the compounds, Mn(III) has a six-coordinated pseudo-octahedral geometry in which O(2), O(3), N(1) and N(2) atoms of the deprotonated di-Schiff base constitute the equatorial plane. In both compounds 1 and 2, water molecules are present in the fifth coordination sites in the apical positions. The sixth coordination sites are occupied by one O atom of a solvent DMF in compound 1 and an N atom of azide in compound 2. The coordinated water initiates hydrogen-bonded networks in both compounds 1 and 2 to form well-isolated supramolecular dimers. At room temperature the χ(M)T values for the compounds 1 and 2 remain almost constant until 30 K. Below this temperature, the χ(M)T values drastically drop to 0.72 cm(3) mol(-1) K for 1 and 0.52 cm(3) mol(-1) K for 2. The best fits were obtained with J = -0.92 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 8.1 × 10(-4) for 1 and J = -1.16 cm(-1), |D| = 2.05 cm(-1), g = 2.0 and R = 1.2 × 10(-3) for 2. However, in compound 3, two axial positions are occupied by the azide ions. The Mn···Mn repeating distance is 6.616 ? along the chain. Magnetic characterisation shows that the μ(1,3)-bridging azide ion mainly transmits an antiferromagnetic interaction (J = -6.36 cm(-1)) between Mn(III) ions. The presence of two methoxy groups increases the steric crowding in the H(2)vanoph moiety and thereby inhibits the formation of a polynuclear compound with this ligand.  相似文献   

17.
A study of differently polarized structures relevant to the H-bonded antiferroelectric (AFE) compound NH(4)H(2)PO(4) (ADP) is performed by first-principles calculations in the framework of the density functional theory. The calculated structures for the AFE and paraelectric (PE) phases are found in general good agreement with the available experimental data. We study the energetics and relative stability of different polarized clusters embedded in a PE matrix of ADP. We find that local ferroelectric and AFE clusters are stable and may coexist in the PE phase, which explains the coexistence of both type of microregions determined by electron spin probe measurements above the AFE-PE transition temperature. The dependency with the O-H···O bridge length of the energy barrier heights for proton transfer is studied for coordinated proton displacements along the bridges within clusters of different sizes. This dependency may have implications for the geometric isotopic effects on T(c). We analyze Mulliken orbital and bond populations which confirm the existence of a charge flow within the NH(4)(+) ion, an essential fact for the stabilization of the AFE phase over other possible polarized structures. This charge transfer is correlated with the optimization of the N-H···O bridges and with distortions of the NH(4)(+) group.  相似文献   

18.
Five members of a new family of polyoxometalate (POM)-ligated tetranuclear rare earth metal complexes have been synthesized and characterized. These compounds have the general formula (HDABCO)(8)H(5)Li(8)[Ln(4)As(5)W(40)O(144)(H(2)O)(10)(gly)(2)]·25H(2)O [Ln = Gd (1), Tb (2), Dy (3), Ho (4) and Y = (5), HDABCO = monoprotonated 1,4-diazabicyclooctane, gly = glycine] and were synthesized from the preformed POM precursor [As(2)W(19)O(67)(H(2)O)](14-). The structure is comprised of two {As(2)W(19)O(68)} building blocks linked by a unit containing four rare earth ions and two additional tungsten centers, with the two glycine ligands playing a key bridging role. Two crystallographically distinct rare earth ions are present in each complex, both of which possess axially compressed, approximate square antiprismatic coordination geometry. The variable-temperature magnetic susceptibility profiles for 2-4 are dominated by population/depopulation of the M(J) sublevels of the relevant ground terms, and fitting of the data has afforded the ligand field parameters in each case, from which the energies of the M(J) sublevels can be calculated. Alternating current magnetic susceptibility data have revealed the onset of slow magnetic relaxation for 3, with the energy barrier to magnetization reversal determined to be 3.9(1) K. As for other lanthanoid complexes that display slow magnetic relaxation, this energy barrier is due to the splitting of the M(J) sublevels of the Dy(3+) ions such that the ground sublevel has a relatively large |M(J)| value, thereby affording Ising-type magnetic anisotropy. This complex is thus the first POM-supported polynuclear lanthanoid-based SMM. Simulation of the W-band EPR spectrum of 1 has afforded the spin Hamiltonian parameters for this species, while the X-band EPR spectrum of 3 indicates the presence of a non-negligible fourth-order transverse component of the anisotropy, which is responsible for the small effective energy barrier observed for 3 and the absence of slow magnetic relaxation for 4.  相似文献   

19.
The tetraaquabis(methylisonicotinate)zinc(II) disaccharinate [hereafter, [Zn(mein)2(H2O)4]·(sac)2], complex has been synthesized and characterized by spectroscopic IR, EPR and X-ray diffraction technique. The octahedral Zn(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate mein ligands through the ring nitrogen and four aqua ligands to form discrete [Zn(mein)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bonds. The magnetic environments of Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 complex have been identified by electron paramagnetic resonance (EPR) technique. EPR spectra of Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 single crystals have been studied between 113 and 300 K in three mutually perpendicular planes. The calculated results of the Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 indicate that Cu2+ ion contains two different complexes and each complexes are located in different chemical environments and each environment contains two magnetically inequivalent Cu2+ sites in distinct orientations occupying substitutional positions in the lattice. The vibrational spectra of this compound were discussed in relation to other compounds containing methyl isonicotinate and saccharinate complexes. The assignments of the observed bands were discussed.  相似文献   

20.
The temperature dependence measurements of 35Cl NQR frequencies and 1H NMR spin-lattice relaxation time T1 were carried out for guanidinium tetrachloro-aurate(III), -platinate(II), and -palladate(II). The gold(III) complex showed four NQR lines at various temperatures between 77 and 344 K, while the platinum-(II) and palladium(II) complexes gave two NQR lines in the temperature ranges 77–169 K and 77–220 K, respectively. An unusual phase transition was located at 363 K for the gold(III) complex. The high-temperature phase was easily supercooled. All the complexes studied yielded a T1 minimum attributable to the reorientation of the planar cation about its C3 axis. The motional parameters were evaluated. The Zeeman-quadrupole cross relaxation between protons and chlorine nuclei was observed for the platinum(II) and palladium(II) complexes at various temperatures below room temperature, while it was also detected for the high-temperature phase of the gold(III) complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号