首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrochemical characteristics of the modified electrodes with ferrocenecarboxylate-coupled aminoundecylthiol monolayers prepared in two sequential steps were studied. The self-assembled monolayer (SAM) was prepared through the covalent attachment of ferrocenecarboxylate in an activation solution containing N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide coupling agent to aminoundecylthiol SAMs formed on a substrate. In the ferrocenecarboxylate-coupled aminoundecylthiol monolayers, the ferrocene moieties were expected to be packed regularly with enhanced ordering compared with those in the FcCOO(CH2)11SH monolayer. As the ferrocene coverage increases, the formal potential for the ferrocene-ferricenium (Fc/Fc+) couple shifts to the positive potential and the full width at half-maximum (deltaE(fwhm)) increases also. The maximum coverage is found to be about 3 x 10(-10) mol cm(-2), which is considered to be a value obtained from a well-ordered ferrocene-tethered SAM. As for the mass change, the increase in ferrocene coverage caused the enhancement in ion association between the ferricenium cations and perchlorate anions resulting in a mass increase upon oxidation; however, the mass change per mole electron decreases. The results obtained from the ferrocenecarboxylate-coupled aminoundecylthiol monolayers were explained to be due to the well-ordered packing with regular spacing compared with those of the FcCOO(CH2)11SH monolayer.  相似文献   

2.
Three thiols with three aromatic rings and different structure – terphenyl-4-methanethiol (TPMT), terphenyl-4-thiol (TPT), and anthracene-2-thiol (AT) – have been used to form self-assembled monolayers (SAM) on vapour-deposited and flame-annealed Au films on glass substrates. All three SAMs effectively block the anodic formation of Au oxide, indicating densely packed layers which prevent the access of water and hydrated ions through the organic layer to the metal surface. The film improves its inhibiting properties with duration of exposure to the thiol solutions, reaching completion after 1 hour [1]. The charge-transfer reaction of the Fe(CN)6 3–/Fe(CN)6 4– system is blocked for TPMT films with an insulation of the π-electron system from the Au surface by the methylene group. TPT and especially AT films show the current density of the redox reactions. It is proposed that the charge transfer occurs via the aromatic molecules of the SAMs to the Au surface. Electronic Publication  相似文献   

3.
Electrochemical impendence spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were performed to investigate the barrier properties and electron transfer of derivatized thiol self-assembled monolayers (SAMs) on gold in the presence of surfactants. The thiol derivatives used included 2-mercaptoethanesulfonic acid (MES), 2-mercaptoacetic acid (MAA), and N-acetyl-L-cysteine (NAC). A simple equivalent circuit was derived to fit the impedance spectra very well. The negative redox probe [Fe(CN)6](3-/4-) was selected to indicate the electron-transfer efficiency on the interface of the studied electrodes. It was found that by changing the surface structure of SAMs, different surfactants could regulate the barrier properties and electron-transfer efficiency in different ways. A positively charged surfactant lowered the electrostatic repulsion between the negative redox probe and negatively charged surface groups of a monolayer, while enhancing the reversibility of electron transfer by virtue of increasing the redox probe concentration within the electric double-layer region. A neutral surfactant showed no significant effect, while a negative surfactant hindered the access and reaction of redox probe by electrostatic repulsion of same-sign charges.  相似文献   

4.
B Zeng  F Zhao  X Ding 《Analytical sciences》2001,17(2):259-264
Nickel hexacyanoferrate (NiHCF) film was prepared and characterized on gold and thiol self-assembled monolayers (SAMs)-modified gold electrodes. It was found that the film exhibited some different electrochemical characteristics compared with that found on a carbon electrode. In the presence of K+, the film exhibited a redox peak at about 0.5 V. The peak potential shifted linearly with the K+ concentration over the range of about 0.1 mM - 0.1 M with slopes of 54 - 60 mV per log[K+]. However, in solutions containing Na+, Li+ or NH4+ ion the film did not generate well-defined peaks, or even a visible redox peak. Therefore, the film showed a selective potential response to K+. The voltammetric behavior of NiHCF film varied with thiols, the preparation procedure and the solution pH. Under certain conditions, the characteristics of the film could be improved to some extent.  相似文献   

5.
Herein, the scanning electrochemical microscopy (SECM) approach is applied to study the formation of thiol-porphyrin self-assembled monolayer (SAMs). Using cyclic voltammetry (CV), the formation process is characterized adopting different probe molecules. The observed phenomena indicate that the formation process is affected by solution properties and the molecular structure of the probe molecules. In K(3)Fe(CN)(6) , the SAMs show a strong electron-transfer (ET) blocking effect on a pure porphyrin-modified electrode. However, addition of metal ions to the porphyrin molecules leads to ET. A consistent tendency is observed throughout the modification process using CV and SECM methods. Furthermore, k(eff) values, the apparent heterogeneous rate constants, obtained for different modification periods affirm the validity of these results. SECM images are used to collect surface information in the course of the modification process when the substrate potential is 0.5 V versus Ag/AgCl. The effect of the substrate potential indicates that the oxidation of the porphyrin molecules is supported by more positive potentials because of the similar bimolecular reaction of the porphyrin ring with positive charge and the probe molecules with negative charge.  相似文献   

6.
Wang SF  Du D  Zou QC 《Talanta》2002,57(4):687-692
The electrochemical behaviors of epinephrine (EP) at the l-cysteine self-assembled monolayers modified gold electrode have been studied. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EP and accelerates electron transfer rate. The diffusion coefficient (D) is 1.48x10(-7) cm(2) s(-1). FTIR has shown that cysteine can bind onto the gold surface through the strong sulfur-gold interaction. The electrocatalytic mechanism to EP has been studied. The catalytic current of EP nu s its concentration has a good linear relation in the range of 1.0x10(-7)-2.0x10(-6) mol l(-1), with the correlation coefficient of 0.9989 by differential pulse voltametric (DPV) response. Detection limit is down to 1.0x10(-8) mol l(-1). At a high EP concentration, the relationship between the catalytic current and its concentration exhibits a Michaelis-Menten kinetic mechanism for the electrocatalytic process and the constant K(m) is about 0.155 mmol l(-1). The highest catalytic current I(m) is 2.72 muA. The modified electrode can be used for the determination of EP in practical injection. The method is simple, quick, sensitive and accurate.  相似文献   

7.
Mixed self-assembled monolayers of 2-(mercaptooctyl)hydroquinone (QH2) and alkylthiols were formed on gold electrodes in EtOH and the redox process of the hydroquinone moiety of QH2 was characterized by cyclic voltammetry (CV) in 0.1 M H(2)SO(4). The monolayers were formed at a series of QH2:alkylthiol ratios and the QH2:alkylthiol ratio in solution was compared to the electrochemical response from QH2 in the obtained monolayer. Mixed monolayers of QH2 with hexylthiol, dodecylthiol, and octadecylthiol were studied. The length of the alkylthiol is crucial for the electrochemical response from QH2 in the monolayer. The total concentration of thiols during monolayer formation and incubation times were also studied and low concentrations of < 2.5 mM and long incubation times gave rise to lower peak separation, lower peak half widths in the CVs of the mixed monolayers, and lower background current. The stability of a pure QH2 monolayer and a 1:4 QH2:hexylthiol monolayer toward high potentials of up to 1.5 V versus Ag/AgCl was also studied and it was observed that the mixed monolayer is significantly more stable than the pure QH2 monolayer.  相似文献   

8.
The application of a potential to deposit a monolayer of 3-mercaptopropionic acid-histidinyl-histidinyl-histidinyl-aspartyl-aspartyl (3-MPA-HHHDD-OH) controls the density and molecular structure of the peptide monolayer, which results in different wettabilities of the surface, surface density, orientation of the molecule (extended or bent), and nonspecific adsorption of serum proteins. 3-MPA-HHHDD-OH must be deposited at 200 mV to maintain an extended configuration, which promoted low biofouling properties.  相似文献   

9.
Gold is known to have good biocompatibility because of its inert activity and the surface property can be easily tailored with self-assembled monolayers (SAMs). In previous works, gold surfaces were tailored with homogeneously mixed amine and carboxylic acid functional groups to generate surfaces with a series of isoelectronic points (IEPs). In other words, by tailoring the chemical composition in binary SAMs, different surface potentials can be obtained under controlled pH environments. To understand how the surface potentials affect the interaction at the interface, a binary-SAMs-modified Au electrode on a quartz crystal microbalance with dissipation detection (QCM-D) was used owing to the high weight sensitivity of QCM-D. In QCM-D, the frequency shift and the energy dissipation are monitored simultaneously to determine the adsorption behaviors of the plasmid DNA to surfaces of various potentials in Tris-buffered NaCl solutions of different pH. The results revealed that the plasmid DNA can be adsorbed on the SAM-modified surfaces electrostatically; thus, in general, the amount of adsorbed plasmid DNA decreased with increasing environmental pH and the decreasing ratio of the amine functional groups on the surfaces owing to weaker positive potentials on the surface. For the high amine-containing surfaces, due to the strong electrostatic attraction, denser films were observed, and thus, the apparent thickness decreased slightly. The negatively charged carboxylic acid surfaces can still adsorb the negatively charged plasmid DNA at some conditions. In other words, the electrostatic model cannot explain the adsorption behavior completely, and the induced dipole (Debye) interaction between the charged and polarizable molecules needs to be considered as well.  相似文献   

10.
Multifunctional sensor systems are becoming increasingly important in electroanalytical chemistry. Together with ongoing miniaturization there is a need for micro- and nanopatterning tools for thin electroactive layers (e.g. self-assembling monolayers). This paper documents a method for production of a micro-array of different metal-porphyrin monolayers with different sensor properties. A new method has been developed for the selective and local metallization of bare porphyrin monolayers by cathodic pulsing and sweeping. The metal-porphyrin monolayers obtained were characterized by cyclic voltammetry. It was shown that porphyrin monolayers can be metallized with manganese, iron, cobalt, and nickel by use of the new method. It is expected that all types of metal-porphyrin monolayers can be produced in the same manner.  相似文献   

11.
XPS and AES are suitable techniques for studying organic monolayers on metals if radiation doses are kept low. The adsorption of self-assembled (SA) mercaptan monolayers on gold is a process in two stages. The adsorption to near completeness is very rapid. However, the process of orientation of the carbon chains, which is responsible for the blocking of electrochemical reactions takes much longer, as could be shown by ARXPS (angle resolved X-ray photo electron spectroscopy). Adsorption under potential control allows electrochemical experiments during the adsorption process as e.g. the measurement of the capacity of the electric double layer. Furthermore the control of the potential guarantees sure that the metal/liquid interface is well defined during the adsorption process.  相似文献   

12.
XPS and AES are suitable techniques for studying organic monolayers on metals if radiation doses are kept low. The adsorption of self-assembled (SA) mercaptan monolayers on gold is a process in two stages. The adsorption to near completeness is very rapid. However, the process of orientation of the carbon chains, which is responsible for the blocking of electrochemical reactions takes much longer, as could be shown by ARXPS (angle resolved X-ray photo electron spectroscopy). Adsorption under potential control allows electrochemical experiments during the adsorption process as e.g. the measurement of the capacity of the electric double layer. Furthermore the control of the potential guarantees sure that the metal/liquid interface is well defined during the adsorption process.  相似文献   

13.
《Supramolecular Science》1998,5(5-6):607-609
Self-assembled monolayers of 1-teradecanethiol on gold were characterized by means of FTIR-ATR measurements, XPS and contact angle measurements. Linear dichroism measurements using FTIR-ATR are used to estimate the orientation of the alkyl chains. An equation for calculating the orientation angles of the alkyls chains was deduced.  相似文献   

14.
Self-assembled monolayers (SAMs) with metal electrodes, especially thiols on gold, are the subject of this investigation because of the unique properties of SAM-modified surfaces. Normal alkanethiols are used to modify the surface of a conventional gold electrode to block certain ions such as Pb(II) and Cu(II) from the surface of the electrode. Normal alkanethiols are also used to study the SAM-gold interfacial adsorption-desorption behavior of the self-assembled monolayer. The effects of varying chain length of SAMs, varying concentration of the alkanethiol solutions, immersion time of the pure gold electrode in the SAM solution, and the stability of a SAM-modified gold electrode in fresh chloroform are investigated using the oxidation-reduction peaks of gold. Conditions that optimize the surface coverage and the uniformity of the SAMs have been determined. Normal alkanethiols proved to be a good insulator on the electrode surface. Received: 16 January 1997 / Accepted: 4 March 1997  相似文献   

15.
Desorption of thiolate self-assembled monolayers (SAMs) seriously limits the fabrication of thiol-based devices. Here we demonstrate that nanoporous Au produced by dealloying Au-Ag alloys exhibits high electrochemical stability against thiolate desorption. Nanoporous Au has many defective sites, lattice strain and residual Ag on the ligament surface. First-principles calculations indicate that these surface aspects increase the binding energy between a SAM and the surface of nanoporous Au.  相似文献   

16.
We have developed a new immunological biosensor for ultrasensitive quantification of human epidermal growth factor receptor-3(HER-3). In order to construct the biosensor, the gold electrode surface was layered with, hexanedithiol, gold nanoparticles, and cysteamine, respectively. Anti-HER-3 antibody was covalently attached to cysteamine by glutaraldehyde and used as a bioreceptor in a biosensor system for the first time by this study. Surface characterization was obtained by means of electrochemical impedance spectroscopy and voltammetry. The proposed biosensor showed a good analytical performance for the detection of HER-3 ranging from 0.2 to 1.4 pg mL−1. Kramers–Kronig transform was performed on the experimental impedance data. Moreover, in an immunosensor system, the single frequency impedance technique was firstly used for characterization of interaction between HER-3 and anti-HER-3. Finally the presented biosensor was applied to artificial serum samples spiked with HER-3.  相似文献   

17.
Stability of self-assembled monolayers on titanium and gold   总被引:1,自引:0,他引:1  
Methyl- and hydroxyl-terminated phosphonic acid self-assembled monolayers (SAMs) were coated on Ti from aqueous solution. Dodecyl phosphate and dodecyltrichlorosilane SAMs were also coated on Ti using solution-phase deposition. The stability of SAMs on Ti was investigated in Tris-buffered saline (TBS) at 37 degrees C using X-ray photoelectron spectroscopy, contact angle goniometry, and atomic force microscopy. For comparison purposes, a hydroxyl-terminated thiol SAM was coated on Au, and its stability was also investigated under similar conditions. In TBS, a significant proportion of phosphonic acid or phosphate molecules were desorbed from the Ti surface within 1 day, while the trichlorosilane SAM on Ti or thiol SAM on Au was stable for up to 7 days under similar conditions. The stability of hydroxyl-terminated phosphonic acid SAM coated Ti and thiol SAM coated Au was investigated in ambient air and ultraviolet (UV) light. In ambient air, the phosphonic acid SAM on Ti was stable for up to 14 days, while the thiol SAM on Au was not stable for 1 day. Under UV-radiation exposure, the alkyl chains of the phosphonic acid SAM were decomposed, leaving only the phosphonate groups on the Ti surface after 12 h. Under similar conditions, decomposition of alkyl chains of the thiol SAM was observed on the Au surface accompanied by oxidation of thiolates.  相似文献   

18.
This report describes the reactivity of acid fluoride (AF)-terminated self-assembled monolayers (SAMs) on gold toward amine and alcohol compounds and the potentiality of AF as a reactive intermediate for surface functionalizations. The AF group was generated in situ on a gold surface by reacting the terminal carboxylic acid group in the SAM of 16-mercaptohexadecanoic acid with cyanuric fluoride and pyridine under the optimized conditions. AF was found to be highly reactive toward various amine groups, such as primary and secondary amines, but it did not react effectively with alcohol. In addition, the amide coupling reaction by microcontact printing (microCP) was compared with the solution-based reaction: when amine-derivatized ferrocene compound was used for 1-min microCP on the AF-activated surface, the surface coverage of the reaction product was about 83% of 3.45 x 1014 cm-2, the coverage obtained in the solution-based reaction. On the basis of the high reaction efficiency of microCP, the AF-activated surface was also used as a platform for patterning a biological ligand, biotin.  相似文献   

19.
Self-assembled monolayers (SAMs) have been widely used in studying interfacial phenomena, biological processes, electrochemistry, photoelectrochemistry, photoactivity and molecular interaction. Much research has been carried out in fabricating and removing SAMs on different substrates. In this work, we report for the first time, to our knowledge, that SAMs of thiolates on gold can be removed by immersing SAMs in 0.5 M NaBH 4 solution for 10 min. The procedure of removing thiolates was very convenient. Cyclic voltammetry, surface-enhanced Raman spectroscopy, and X-ray photoelectron spectroscopy were used to characterize this process. The results indicated that the SAMs of thiolates on gold can be removed efficiently by NaBH 4.  相似文献   

20.
We have developed synthesis routes for the introduction of short and long dialkylsulfides onto the primary side of alpha-, beta-, and gamma-cyclodextrins. Monolayers of these cyclodextrin adsorbates were characterized by electrochemistry, wettability studies, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and atomic force microscopy (AFM). The differences in thickness and polarity of the outerface of the monolayers were measured by electro-chemistry and wettability studies. On average about 70% of the sulfide moieties were used for binding to the gold, as measured by XPS. Tof-SIMS measurements showed that the cyclodextrin adsorbates adsorb without any bond breakage. AFM measurements revealed for beta-cyclodextrin monolayers a quasi-hexagonal lattice with a lattice constant of 20.6 A, which matches the geometrical size of the adsorbate. The alpha-cyclodextrin and gamma-cyclodextrin monolayers are less ordered. Interactions of the anionic guests 1-anilinonaphthalene-8-sulfonic acid (1,8-ANS) and 2-(p-toluidinyl)naphthalene-6-sulfonic acid (2,6-TNS) and the highly ordered monolayers of heptapodant beta-cyclodextrin adsorbates were studied by surface plasmon resonance (SPR) and electrochemical impedance spectroscopy. The SPR measurements clearly showed interactions between a beta-cyclodextrin monolayer and 1,8-ANS. Electrochemical impedance spectroscopy measurements gave high responses even at low guest concentrations (< or = 5 microM). The association constant for the binding of 1,8-ANS (K = 289,000 +/- 13,000M-1) is considerably higher than the corresponding value in solution. (Partial) methylation of the secondary side of the beta-cyclodextrin strongly decreases the binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号