首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many different processes take place at the cell membrane interface. Indeed, for instance, ligands bind membrane proteins which in turn activate peripheral membrane proteins, some of which are enzymes whose action is also located at the membrane interface. Native cell membranes are difficult to use to gain information on the activity of individual proteins at the membrane interface because of the large number of different proteins involved in membranous processes. Model membrane systems, such as monolayers at the air-water interface, have thus been extensively used during the last 50 years to reconstitute proteins and to gain information on their organization, structure and activity in membranes. In the present paper, we review the recent work we have performed with membrane and peripheral proteins as well as enzymes in monolayers at the air-water interface. We show that the structure and orientation of gramicidin has been determined by combining different methods. Furthermore, we demonstrate that the secondary structure of rhodopsin and bacteriorhodopsin is indistinguishable from that in native membranes when appropriate conditions are used. We also show that the kinetics and extent of monolayer binding of myristoylated recoverin is much faster than that of the nonmyristoylated form and that this binding is highly favored by the presence polyunsaturated phospholipids. Moreover, we show that the use of fragments of RPE65 allow determine which region of this protein is most likely involved in membrane binding. Monomolecular films were also used to further understand the hydrolysis of organized phospholipids by phospholipases A2 and C.  相似文献   

2.
Langmuir monolayers were used to characterize the influence of the physical state of phospholipid monolayers on the binding of protein Retinis Pigmentosa 2 (RP2). The binding parameters of RP2 (maximum insertion pressure (MIP), synergy and ΔΠ(0)) in monolayers were thus analyzed in the presence of phospholipids bearing increasing fatty acyl chain lengths at temperatures where their liquid-expanded (LE), liquid-condensed (LC), or solid-condensed (SC) states can be individually observed. The data show that a larger value of synergy is observed in the LC/SC states than in the LE state, independent of the fatty acyl chain length of phospholipids. Moreover, both the MIP and the ΔΠ(0) increase with the fatty acyl chain length when phospholipids are in the LC/SC state, whereas those binding parameters remain almost unchanged when phospholipids are in the LE state. This effect of the phospholipid physical state on the binding of RP2 was further demonstrated by measurements performed in the presence of a phospholipid monolayer showing a phase transition from the LE to the LC state at room temperature. The data collected are showing that very similar values of MIP but very different values of synergy and ΔΠ(0) are obtained in the LE (below the phase transition) and LC (above the phase transition) states. In addition, the binding parameters of RP2 in the LE (below the phase transition) as well as in the LC (above the phase transition) states were found to be indistinguishable from those where single LC and LE states are respectively observed. The preference of RP2 for binding phospholipids in the LC state was then confirmed by the observation of a large modification of the shape of the LC domains in the phase transition. Therefore, protein binding parameters can be strongly influenced by the physical state of phospholipid monolayers. Moreover, measurements performed with the α/β domain of RP2 strongly suggest that the β helix of RP2 plays a major role in the preferential binding of this protein to phospholipids in the LC state.  相似文献   

3.
Polyunsaturated phospholipids are known to be important with regard to the biological functions of essential fatty acids, for example, involving neural tissues such as the brain and retina. Here we have employed two complementary structural methods for the study of polyunsaturated bilayer lipids, viz. deuterium ((2)H) NMR spectroscopy and molecular dynamics (MD) computer simulations. Our research constitutes one of the first applications of all-atom MD simulations to polyunsaturated lipids containing docosahexaenoic acid (DHA; 22:6 cis-Delta(4,7,10,13,16,19)). Structural features of the highly unsaturated, mixed-chain phospholipid, 1-palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (PDPC), have been studied in the liquid-crystalline (L(alpha)) state and compared to the less unsaturated homolog, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The (2)H NMR spectra of polyunsaturated bilayers are dramatically different from those of less unsaturated phospholipid bilayers. We show how use of MD simulations can aid in interpreting the complex (2)H NMR spectra of polyunsaturated bilayers, in conjunction with electron density profiles determined from small-angle X-ray diffraction studies. This work clearly demonstrates preferred helical and angle-iron conformations of the polyunsaturated chains in liquid-crystalline bilayers, which favor chain extension while maintaining bilayer flexibility. The presence of relatively long, extended fatty acyl chains may be important for solvating the hydrophobic surfaces of integral membrane proteins, such as rhodopsin. In addition, the polyallylic DHA chains have a tendency to adopt back-bended (hairpin-like) structures, which increase the interfacial area per lipid. Finally, the material properties have been analyzed in terms of the response of the bilayer to mechanical stress. Simulated bilayers of phospholipids containing docosahexaenoic acid were less sensitive to the applied surface tension than were saturated phospholipids, possibly implying a decrease in membrane elasticity (area elastic modulus, bending rigidity). The above features distinguish DHA-containing lipids from saturated or monounsaturated lipids and may be important for their biological modes of action.  相似文献   

4.
Factor X is a blood clotting protein that associates at membrane surfaces to become activated during the coagulation cascade. A molecular level understanding of the protein-membrane phospholipid interactions has not been reached, although it is thought that the protein binds to phospholipids in the presence of calcium through a bridge with the Gla (gamma-carboxyglutamic acid) domain on the protein. In this work, phospholipid Langmuir monolayers have been utilized as model membranes to study factor X association with phospholipid membrane components. Surface pressure measurements indicate that subphase addition of sodium, magnesium, and calcium ions enhances protein penetration of the lipid monolayer, with the largest association found with calcium ions in the subphase. Fluorescence microscopy images collected after protein penetration of lipid monolayers indicate monolayer condensation in the presence of sodium and magnesium ions. Aggregation of lipid domains is induced when calcium is in the subphase, indicating binding-induced flocculation of surface lipid aggregates. Calcium binding to factor X likely causes a conformational change which allows protein-membrane interaction via hydrophobic association with lipid molecules.  相似文献   

5.
The presence of microdomains, called lipid rafts, in biological membranes is usually explained by lateral segregation between specific lipids and proteins. These rafts present similarities with the membrane domains isolated by their non-ionic detergent-resistance at 4 degrees C. They are enriched in sphingomyelin and cholesterol as compared with the outer leaflet of eukaryotic cell membranes. To understand the role played by the lipids enriched in rafts in their resistance to solubilization by detergents, the interactions between these lipids and the non-ionic detergent Triton X-100 were studied by using different lipid monolayers at the air-water interface. The influence of Triton X-100 on the Langmuir isotherms (i.e. surface pressure/area isotherms) of monolayers containing sphingomyelin and cholesterol at different mole ratios was analyzed and the results were compared with the influence of Triton X-100 on monolayers containing a phosphatidylcholine bearing a saturated and an unsaturated fatty acid (i.e. palmitoyloleylphosphatidylcholine) and cholesterol. This phosphatidylcholine was chosen since the phosphatidylcholines present in rafts isolated from bovine kidney could contain about 50% of saturated fatty acids. Triton X-100 induces an increase in the condensing effect observed as compared with ideal mixture of phospholipid/cholesterol. Triton X-100-induced changes in the morphology of the monolayers were visualized by Brewster angle microscopy, which confirmed the differences of behavior observed by analyzing the isotherms.  相似文献   

6.
《Supramolecular Science》1998,5(5-6):795-802
C-reactive protein (CRP) is an acute phase reactive protein, which has been shown to specifically bind to phosphorylcholine (PC) and phosphorylethanoamine (PE) moieties in the presence of calcium. In order to investigate the effect of steric hindrance on the specific binding of CRP to membranes, we designed and synthesized six phospholipids, each containing a long-arm spacer of 3, 6 or 8 atoms between the head group and hydrophobic tail. By mixing synthesized lipids and natural lipids the ligand-containing monolayers were prepared, which have PC or PE groups protruding out of the membrane surface. To characterize of the synthesized phospholipids, the thickness of the lipid monolayers was measured by surface plasmon resonance (SPR) technique, the phase behavior of the lipid monolayer at air/water interface was studied by pressure–area analysis, and the specific binding of rabbit C-reactive protein to the synthesized lipid containing membranes was studied by imaging ellipsometry.  相似文献   

7.
The dipole potential is an electrical potential within phospholipid membranes, which arises because of the alignment of dipolar residues of the lipids and/or water dipoles in the region between the aqueous phases and the hydrocarbon-like interior of the membrane. For a fully saturated phosphatidylcholine membrane, its value is believed to be in the range 220–280 mV, positive in the membrane interior. This results in an enormous electric field strength within the membrane of 108–109 Vm−1. The dipole potential is thus likely to have great significance in controlling the conformation of ion-translocating membrane proteins and so in regulating enzyme function. Because of its location within the membrane, quantification of the dipole potential is extremely difficult and presents a great challenge to the experimentalist and theoretician alike. Both electrical and spectroscopic methods developed for the determination of the dipole potential on lipid bilayers and monolayers are presented and possible causes for differences in the values derived are discussed.  相似文献   

8.
In order to elucidate the influence on the lipidic environment on the recognition process of its membrane associated receptor, the interactions of the vasoconstrictor peptide endothelin 1 with various phospholipids have been investigated using different lipidic model membranes: monolayers at constant surface pressure, vesicles and micelles. A monolayer study of ET1 adsorbed onto the water surface has shown that the C-terminus of the peptide points towards the aqueous phase. Penetration measurements into lipidic monolayers indicate that ET1 adsorbs to phospholipids with an orientation similar to that of the air–water interface and fluorescence measurements are in agreement with such an orientation of the peptide. This adsorption is selective for neutral phospholipids and indicates that the nature of the phospholipid headgroups is of major importance for the approach of the membrane associated receptor.  相似文献   

9.
The forces that drive lipid raft formation are poorly understood. To date, most of the attention has focused on attractive interactions between cholesterol and high‐melting lipids. Remarkably little attention has been paid to repulsive forces. Here, we show that repulsive interactions between an exchangeable mimic of cholesterol and an exchangeable mimic of a low‐melting phospholipid in liquid‐disordered bilayers can be much stronger than the attractive forces between this same sterol and an exchangeable mimic of a high‐melting phospholipid in liquid‐ordered bilayers. We conclude that polyunsaturated phospholipids have been largely overlooked as major players in lipid raft formation. This knowledge should stimulate considerable interest in controlling the levels of polyunsaturated phospholipids for the proper functioning of cell membranes.  相似文献   

10.
Phospholipid vesicles are of intense fundamental and practical interest, yet methods for their de novo generation from reactive precursors are limited. A non‐enzymatic and chemoselective method to spontaneously generate phospholipid membranes from water‐soluble starting materials would be a powerful tool for generating vesicles and studying lipid membranes. Here we describe the use of native chemical ligation (NCL) to rapidly prepare phospholipids spontaneously from thioesters. While NCL is one of the most popular tools for synthesizing proteins and nucleic acids, to our knowledge this is the first example of using NCL to generate phospholipids de novo. The lipids are capable of in situ synthesis and self‐assembly into vesicles that can grow to several microns in diameter. The selectivity of the NCL reaction makes in situ membrane formation compatible with biological materials such as proteins. This work expands the application of NCL to the formation of phospholipid membranes.  相似文献   

11.
Polyunsaturated lipids in cellular membranes are known to play key roles in such diverse biological processes as vision, neuronal signaling, and apoptosis. One hypothesis is that polyunsaturated lipids are involved in second messenger functions in biological signaling. Another current hypothesis affirms that the functional role of polyunsaturated lipids relies on their ability to modulate physical properties of the lipid bilayer. The present research has employed solid-state 2H NMR spectroscopy to acquire knowledge of the molecular organization and material properties of polyunsaturated lipid bilayers. We report measurements for a homologous series of mixed-chain phosphatidylcholines containing a perdeuterated, saturated acyl chain (n:0) at the sn-1 position, adjacent to docosahexaenoic acid (DHA, 22:6omega3) at the sn-2 position. Measurements have been performed on fluid (L(alpha))-state multilamellar dispersions as a function of temperature for saturated acyl chain lengths of n = 12, 14, 16, and 18 carbons. The saturated sn-1 chains are therefore used as an intrinsic probe with site-specific resolution of the polyunsaturated bilayer structure. The 2H NMR order parameters as a function of acyl position (order profiles) have been analyzed using a mean-torque potential model for the chain segments, and the results are discussed in comparison with the homologous series of disaturated lipid bilayers. At a given absolute temperature, as the sn-1 acyl length adjacent to the sn-2 DHA chain is greater, the order of the initial chain segments increases, whereas that of the end segments decreases, in marked contrast with the corresponding disaturated series. For the latter, the order of the end segments is practically constant with acyl length, thus revealing a universal chain packing profile. We find that the DHA-containing series, while more complex, is still characterized by a universal chain packing profile, which is shifted relative to the homologous saturated series. Moreover, we show how introduction of DHA chains translates the order profile along the saturated chains, making more disordered states accessible within the bilayer central region. As a result, the area per lipid headgroup is increased as compared to disaturated bilayers. The systematic analysis of the 2H NMR data provides a basis for studies of lipid interactions with integral membrane proteins, for instance in relation to characteristic biological functions of highly unsaturated lipid membranes.  相似文献   

12.
Membrane binding of proteins such as short chain dehydrogenase reductases or tail-anchored proteins relies on their N- and/or C-terminal hydrophobic transmembrane segment. In this review, we propose guidelines to characterize such hydrophobic peptide segments using spectroscopic and biophysical measurements. The secondary structure content of the C-terminal peptides of retinol dehydrogenase 8, RGS9-1 anchor protein, lecithin retinol acyl transferase, and of the N-terminal peptide of retinol dehydrogenase 11 has been deduced by prediction tools from their primary sequence as well as by using infrared or circular dichroism analyses. Depending on the solvent and the solubilization method, significant structural differences were observed, often involving α-helices. The helical structure of these peptides was found to be consistent with their presumed membrane binding. Langmuir monolayers have been used as membrane models to study lipid–peptide interactions. The values of maximum insertion pressure obtained for all peptides using a monolayer of 1,2-dioleoyl-sn-glycero-3-phospho-ethanolamine (DOPE) are larger than the estimated lateral pressure of membranes, thus suggesting that they bind membranes. Polarization modulation infrared reflection absorption spectroscopy has been used to determine the structure and orientation of these peptides in the absence and in the presence of a DOPE monolayer. This lipid induced an increase or a decrease in the organization of the peptide secondary structure. Further measurements are necessary using other lipids to better understand the membrane interactions of these peptides.  相似文献   

13.
The aim of this work was to get insight into cholesterol distribution between two leaflets of a phospholipids bilayer. In this order, the thermodynamic analysis of the interactions between membrane lipids in binary (cholesterol/phospholipid) and ternary (phospholipid/ phospholipid/cholesterol) mixed Langmuir monolayers has been performed. For our investigation, phosphatidylcholine and phosphatidylethanolamine, which are the main types of phospholipids determining the distribution of cholesterol in membrane leaflets, were chosen and mixed in proportions corresponding to their molar ratios in the inner and outer layers of the natural human erythrocyte membrane. Into these mixed systems, various amount of cholesterol were incorporated. It has been found that despite strong differences in the phospholipid composition of both investigated ternary mixed systems, the influence of cholesterol is very similar, which indicates that cholesterol is symmetrically distributed between the inner and outer leaflets of the human erythrocytes membrane.  相似文献   

14.
The hydrolytic activity of secretory phospholipase A(2) (PLA(2)) is regulated by many factors, including the physical state of substrate aggregates and the chemical nature of phospholipid molecules. In order to achieve strong binding of PLA(2) on its substrates, many previous works have used anionic lipid dispersion to characterize the orientation and penetration depth of PLA(2) molecules on membrane surfaces. In this study, we applied monolayer technique with controllable surface area to investigate the PLA(2)s of Taiwan cobra venom and bee venom on zwitterionic phophatidylcholine monolayers and demonstrated an optimum hydrolytic activity at a surface pressure of 18 and 24 mN/m, respectively. By combining polarized attenuated total reflection Fourier-transform infrared spectroscopy and monolayer-binding experiments, we found that the amount of membrane-bound PLA(2) decreased markedly as the surface pressure of the monolayer was increased. Interestingly, the insertion area of the PLA(2)s decreased to near zero as the surface pressure increased to the optimum pressure for hydrolytic activity. On the basis of the measured infrared dichroic ratio, the orientation of the PLA(2)s bound to zwitterionic membranes was similar to that observed on a negatively charged membrane and was independent of the surface pressure. Our findings suggest that both PLA(2)s were located on the membrane surface rather than penetrating the membrane bilayer and that the deeply inserted mode is not a favorable condition for the hydrolysis of phospholipids in zwitterionic phospholipid membranes. The results are discussed in terms of the easy access of catalytic water for the PLA(2) activity and the mobilization of its substrate and product to facilitate the catalytic process.  相似文献   

15.
Penetratin (RQIKIWFQNRRMKWKK) enters cells by different mechanisms, including membrane translocation, thus implying that the peptide interacts with the lipid bilayer. Penetratin also crosses the membrane of artificial vesicles, depending on their phospholipid content. To evaluate the phospholipid preference of penetratin, as the first step of translocation, we exploited the benzophenone triplet kinetics of hydrogen abstraction, which is slower for secondary than for allylic hydrogen atoms. By using multilamellar vesicles of varying phospholipid content, we identified and characterized the cross-linked products by MALDI-TOF mass spectrometry. Penetratin showed a preference for negatively charged (vs. zwitterionic) polar heads, and for unsaturated (vs. saturated) and short (vs. long) saturated phospholipids. Our study highlights the potential of using benzophenone to probe the environment and insertion depth of membranotropic peptides in membranes.  相似文献   

16.
Penetratin (RQIKIWFQNRRMKWKK) enters cells by different mechanisms, including membrane translocation, thus implying that the peptide interacts with the lipid bilayer. Penetratin also crosses the membrane of artificial vesicles, depending on their phospholipid content. To evaluate the phospholipid preference of penetratin, as the first step of translocation, we exploited the benzophenone triplet kinetics of hydrogen abstraction, which is slower for secondary than for allylic hydrogen atoms. By using multilamellar vesicles of varying phospholipid content, we identified and characterized the cross‐linked products by MALDI‐TOF mass spectrometry. Penetratin showed a preference for negatively charged (vs. zwitterionic) polar heads, and for unsaturated (vs. saturated) and short (vs. long) saturated phospholipids. Our study highlights the potential of using benzophenone to probe the environment and insertion depth of membranotropic peptides in membranes.  相似文献   

17.
The effects of cholesterol on various membrane proteins have received considerable attention. An important question regarding each of these effects is whether the cholesterol exerts its influence by binding directly to membrane proteins or by changing the properties of lipid bilayers. Recently it was suggested that a difference in the effects of natural cholesterol and its enantiomer, ent-cholesterol, would originate from direct binding of cholesterol to a target protein. This strategy rests on the fact that ent-cholesterol has appeared to have effects on lipid films similar to those of cholesterol, yet fluorescence microscopy studies of phospholipid monolayers have provided striking demonstrations of the enantiomer effects, showing opposite chirality of domain shapes for phospholipid enantiomer pairs. We observed the shapes of ordered domains in phospholipid monolayers containing either cholesterol or ent-cholesterol and found that the phospholipid chirality had a great effect on the domain chirality, whereas a minor (quantitative) effect of cholesterol chirality could be observed only in monolayers with racemic dipalmitoylphosphatidylcholine. The latter is likely to derive from cholesterol-cholesterol interactions. Accordingly, cholesterol chirality has only a modest effect that is highly likely to require the presence of solidlike domains and, accordingly, is unlikely to play a role in biological membranes.  相似文献   

18.
The studies on the influence of cholesterol on phospholipids accumulated in inner leaflet of membrane are performed rather rarely, especially in the presence of electrolytes, which are present in membrane environment. Therefore, in this work the interactions between cholesterol and saturated phosphatidylethanolamine (PE) and phosphatidylserine (PS) were studied in binary (phospholipid/cholesterol) and ternary (PS/PE/cholesterol) monolayers in the presence and absence of sodium and calcium ions. The composition of ternary films was estimated to reflect the proportion of PSs to PEs in inner layer of human erythrocyte membrane. The influence of electrolytes on pure PS and PE films was also analyzed. It was found that both sodium and calcium ions affect the condensation of DPPS films, and influence the interactions in DPPS/cholesterol monolayers. On the other hand, no effect of these ions on DPPE films as well as on DPPE/cholesterol interactions in the mixed systems was observed. The results obtained for ternary mixtures prove that in the presence of Na+ the interactions between the lipids are more favorable than in the absence of these ions. This is in contrast to the effect of Ca2+. All the results were thoroughly analyzed in the context of the structure of polar heads of the investigated phospholipids.  相似文献   

19.
Biomimetic colloidal particles are promising agents for biosensing, but current technologies fall far short of Nature's capabilities for sensing, assessing, and responding to stimuli. Phospholipid-containing cell membranes are capable of binding and responding to an enormous variety of biomolecules by virtue of membrane organization and the presence of receptor proteins. By tuning the composition and functionalization of simulated membranes, soft colloids such as droplets and bubbles can be designed to respond to various stimuli. Moreover, because lipid monolayers can surround almost any hydrophobic phase, the interior of the colloid can be selected to provide a sensitive readout, for example in the form of optical microscopy or acoustic detection. In this work, we review some advances made by our group and others in the formulation of lipid-coated particles with different internal phases such as fluorocarbons, hydrocarbons, or liquid crystals. In some cases, binding or displacement of stabilizing lipids gives rise to conformational changes or disruptions in local membrane geometry, which can be amplified by the interior phase. In other cases, multivalent analytes can promote aggregation or even membrane fusion, which can be utilized for an optical or acoustic readout. By highlighting a few recent examples, we hope to show that lipid monolayers represent a versatile biosensing platform that can react to and detect biomolecules by leveraging the unique capabilities of phospholipid membranes.  相似文献   

20.
Lupane type pentacyclic triterpenes (LTs) are pharmacologically active natural products isolated from different plants. They have broad spectrum of therapeutic action ranging from anticancer via anti-HIV, antibiotic to anti-inflammatory and anti-protozoal activity. Many scientific papers underline that the key stage in the LT mechanism of action is their incorporation into cellular membrane and the interaction with the structural lipids. In our research we apply Langmuir monolayers as a versatile platform for the investigation of these phenomena, since till now important aspects concerning this issue are incomprehensible. We focus our attention on the interactions of lupeol and betulinic acid with choline-headgroup structural lipids: a representative of saturated glycerophosphatidylcholines (DPPCs), and octadecyl-sphingomyelin--a representative of membrane sphingolipids. Application of complementary physicochemical techniques such as the Langmuir technique, Brewster angle microscopy, and grazing incidence X-ray diffraction supported by thermodynamic analysis enabled us to investigate the intermolecular interactions in such binary model systems. Our results corroborate that LT is miscible with the outer leaflet membrane phospholipids, both DPPC and SM in the whole range of mole ratios. Moreover, the introduction of LT into the phospholipid film, even in small proportion, leads to the loss of periodical ordering of the phospholipid molecules and the disappearance of the diffraction signal as observed by GIXD. Our results also proved that LT does not form any surface complexes of fixed stoichiometry resembling the well characterized lipid rafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号