共查询到16条相似文献,搜索用时 62 毫秒
1.
采用真空气相沉积法制备了结构为ITO/TPD/Gd(DBM)3bath/Mg:Ag的双层结构有机光伏器件,其中,TPD为受体,Gd(DBM)3bath为给体。在4mW/cm^2的365nm波长紫外光从IT0玻璃方向垂直照射下,器件的开路电压Voc,短路电流Isc和填充因子FF分别为3.2V,29.24μA/cm^2,0.286。在实验中发现器件的外量子效率的光谱响应曲线与TPD的吸收光谱曲线基本一致,在紫外光照射下TPD/Gd(DBM)3bath膜层的界面处产生的激基复合物在光伏过程中扮演着至关重要的角色。 相似文献
2.
3.
研究了有机光伏器件的激子阻挡层(EBL)的工作机制,对于像bathocuproine(BCP)和bathophenanthroline(Bphen)这样的电子阻挡层,主要利用的是他们的强的电子传输能力。而像copper phthalocyanine(CuPc)作为电子阻挡层则可利用它大的空穴传输能力和较低的HOMO能级。我们还发现当CuPc厚度为10~30nm时,CuPc表现出比BCP和Bphen高的EB特性。文中还较为详细地叙述了CuPc作为电子阻挡层的运行机制。 相似文献
4.
5.
采用真空热蒸发镀膜的方法制备了酞菁铜(CuPc)和富勒烯(C60)构成的平面异质结结构光伏器件,并初步研究了CuPc薄膜生长速率对器件光伏性能的影响,我们发现以较大薄膜生长速率制备的器件表现出较大的短路电流和能量转换效率。X射线衍射和原子力显微镜观察的结果表明生长速率较大的CuPc薄膜结晶相含量较少,薄膜结构较均匀、致密、平整,这可能使得CuPc薄膜激子扩散和载流子迁移特性得到提高,也可能改善其与C60受主薄膜和ITO阳极的接触,并有利于载流子的分离和收集,从而表现出较好的光伏特性。 相似文献
6.
制备了结构为CuPc/缓冲层/C60异质结的有机光伏器件,分别选用三氧化钼和红荧烯为缓冲层,研究了增加缓冲层对器件性能的影响.结果表明,增加三氧化钼和红荧烯缓冲层后器件的开路电压和光电转换效率都得到提高,器件的短路电流密度和填充因子都有所降低.开路电压从没有缓冲层时的0.39 V分别提高到0.58 V、0.55 V,转换效率从0.36%提高到0.44%,短路电流从1.92 mA/cm2分别降低到1.77 mA/cm2、1.81 mA/cm2,填充因子从0.48分别减少到0.43、0.44.进一步研究表明器件的短路电流密度受缓冲层厚度的影响很大,当缓冲层厚度很小时,器件短路电流密度还有所增加,但随着缓冲层厚度的增加,短路电流密度逐渐减小,当缓冲层厚度为10 nm时,器件短路电流密度减少到0.35 mA/cm2.开路电压随着厚度的增加逐渐增加,从1 nm时的0.43 V增加10 nm时0.63 V.根据整数电荷转移模型和界面能级理论解释有机光伏器件开路电压提高以及短路电流密度减少的原因,为有机太阳能电池性能的改善提供了研究方法. 相似文献
7.
制备了结构为CuPc/缓冲层/C60异质结的有机光伏器件,分别选用三氧化钼和红荧烯为缓冲层,研究了增加缓冲层对器件性能的影响.结果表明,增加三氧化钼和红荧烯缓冲层后器件的开路电压和光电转换效率都得到提高,器件的短路电流密度和填充因子都有所降低.开路电压从没有缓冲层时的0.39V分别提高到0.58V、0.55V,转换效率从0.36%提高到0.44%,短路电流从1.92mA/cm2分别降低到1.77mA/cm2、1.81mA/cm2,填充因子从0.48分别减少到0.43、0.44.进一步研究表明器件的短路电流密度受缓冲层厚度的影响很大,当缓冲层厚度很小时,器件短路电流密度还有所增加,但随着缓冲层厚度的增加,短路电流密度逐渐减小,当缓冲层厚度为10nm时,器件短路电流密度减少到0.35mA/cm2.开路电压随着厚度的增加逐渐增加,从1nm时的0.43V增加10nm时0.63V.根据整数电荷转移模型和界面能级理论解释有机光伏器件开路电压提高以及短路电流密度减少的原因,为有机太阳能电池性能的改善提供了研究方法. 相似文献
8.
9.
10.
采用有机小分子TBPe(2,5,8,11-tetratertbutylperylene)以不同比例掺入MEH-PPV(poly )作为发光层,研究了TBPe不同掺杂比例对器件性能的影响,进而对发光强度进行优化。对于所制备的ITO/PEDOT:PSS/MEH-PPV/TBPe/Al有机电致发光器件,TBPe的最优蒸镀厚度为0.5 nm,其发光强度相对于标准器件提高了325%。ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Liq/Al有机电致发光器件的最优掺杂比例为MEH-PPV:TBPe=100:30(质量比),其发光亮度相比于未掺杂器件提高了44%。在上述器件的基础上增加Alq3层提高电子注入,分别制作了Liq和LiF作为修饰层的ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Alq3/Liq/Al和ITO/PEDOT:PSS/MEH-PPV:TBPe/TBPe/Alq3/LiF/Al多层器件,发光亮度分别达到4 162 cd/m2和4 701 cd/m2。所有器件的电致发光波长均为580 nm,为MEH-PPV的发光,TBPe的掺杂对MEH-PPV的发光起到了增强作用。 相似文献
11.
金属/有机界面势垒对单层有机电致发光器件发光效率的影响 总被引:3,自引:2,他引:1
基于高场下电荷的注入过程及激子的解离和复合过程,建立了单层有机发光器件电致发光(EL)效率的理论模型。计算表明:(1)当金属/有机界面势垒高度大于0.3eV时,器件的EL效率很低,降低金属/有机界面势垒可以显著提高器件的EL效率;(2)在较低偏压下,注入过程对器件的电致发光效率起主要作用,但在高偏压下复合过程起支配作用。这一模型可以阐明注入和复合过程对有机发光器件EL效率的影响,对选择发光材料、优化器件结构和提高器件EL效率具有指导意义。 相似文献
12.
利用热蒸发的方法制备了有机量子阱发光器件和Alq3单层发光器件,其中NPB(N,N′-Di-[(lnaphthalenyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine)作垒层,Alq3(Tris-(8-quinolinolato) aluminum)作阱层,量子阱结构类似于无机半导体的Ⅱ型量子阱结构.实验发现有机量子阱发光器件结构中存在垒层向阱层的F(o)rster无辐射共振能量转移,具有良好的电流-电压特性,光谱的窄化及蓝移,并且光谱的蓝移程度随电压的增大而逐渐增强. 相似文献
13.
Organic Photovoltaic Cells with Improved Performance Using Bathophenanthroline as a Buffer Layer 总被引:2,自引:0,他引:2
采用Bphen作为缓冲层,研究Bphen处在电子受体材料C60和阴极Ag之间对有机薄膜光伏电池(OPV)性能的影响.通过引入2.5nm厚的Bphen,在100 mW/cm2光照下,CuPc/C60结构的器件效率从0.87%提高到2.25%. 对光生电流-电压的分析表明,Bphen缓冲层可以有效的提高电子从C60层向Ag阴极的传输能力和平衡器件中载流子的传输能力.系统研究了Bphen厚度对OPV器件性能的影响,发现随着Bphen厚度的增加,电导率的降低是限制器件性能的主要原因.此外,采用紫外-可见光分光光度计测试了器件的吸收光谱,发现Bphen缓冲层可以增强CuPc/C60的光吸收能力. 相似文献
14.
利用杂质光伏效应能够使太阳电池充分利用那些能量小于禁带宽度的太阳光子,从而提高电池的转换效率.为了更好地利用杂质光伏效应提高砷化镓太阳电池的转换效率,本文利用数值方法研究在砷化镓太阳电池中掺入镍杂质以形成杂质光伏太阳电池,分析掺镍对电池的短路电流密度、开路电压以及转换效率的影响;同时,探讨电池的陷光结构对杂质光伏太阳电池器件性能的影响.结果表明:利用杂质光伏效应掺入镍杂质能够增加子带光子的吸收,使得电池转换效率提高3.32%;转换效率的提高在于杂质光伏效应使电池的红外光谱响应得到扩展;另外,拥有良好的陷光结构是取得好的杂质光伏效应的关键.由此得出:在砷化镓太阳电池中掺镍形成杂质光伏太阳电池是一种能够提高砷化镓太阳电池转换效率的新方法. 相似文献
15.
利用低温水热法生长的ZnO纳米棒(ZnO-NRs),和p型有机半导体材料聚[2-甲氧基-5-(2-乙基己氧基)-1,4-苯撑乙烯撑](MEH-PPV)复合制备了结构为“ITO/ZnO晶种/ZnO-NRs/MEH-PPV/Al”的发光器件。测试结果发现,该器件具有非常好的二极管整流特性。对ZnO-NRs/M EH-PPV异质结施加超过17 V的反向偏压时,可同时获得两种半导体材料的发光,且ZnO近紫外光(380 nm )发射强度远大于 M EH-PPV的红橙光强度,发光功率随着反向偏压的增加迅速增强,然而施加正向偏压时未探测到发光。该器件的发光机理不同于其他文献报道的正偏压发光,而属于反偏压发光器件,其发光机理归因于有机无机复合异质结的界面特殊性和ZnO-NRs的纳米尺寸效应,反偏压下器件实现的是载流子隧穿发光,而正偏压时载流子以表面态的无辐射复合及漏电流方式消耗。 相似文献
16.
《Current Applied Physics》2019,19(11):1271-1275
Photoelectric properties of the planar ITO/MoO3/DBP/PTCBI/BCP/Ag system were characterized on the basis of short-circuit current, open-circuit voltage and absorption spectra, and current-voltage measurements in the dark and under monochromatic illumination of low intensity. Photovoltaic performance of the system was compared with the performance of ideal semiconductor and excitonic cells of chosen bandgaps. Such analysis shows, that the fabricated cell exhibits quite high value of the open-circuit voltage, in comparison to the SQ limits calculated for semiconductor devices of bandgaps close to the LUMOPTCBI-HOMODBP offset or crystalline silicon cells of the same absorptivity. This confirms that the DBP/PTCBI junction exhibits good properties for conversion of exciton energy to chemical energy of electron-hole pair. Moreover, open-circuit voltage and short-circuit current of the investigated cell practically do not change within the 520 nm–620 nm range, for which they reach the maximum values, making the junction of DBP/PTCBI attractive for use in indoor photovoltaics. 相似文献